Tutorial describing the basic search and navigation features of the Allen Mouse Brain Atlas
Tutorial describing the basic search and navigation features of the Allen Developing Mouse Brain Atlas
This tutorial demonstrates how to use the differential search feature of the Allen Mouse Brain Atlas to find gene markers for different regions of the brain and to visualize this gene expression in three-dimensional space. Differential search is also available for the Allen Developing Mouse Brain Atlas and the Allen Human Brain Atlas.
The Mouse Phenome Database (MPD) provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD ensures rigorous curation of phenotype data and supporting documentation using relevant ontologies and controlled vocabularies. As a repository of curated and integrated data, MPD provides a means to access/re-use baseline data, as well as allows users to identify sensitized backgrounds for making new mouse models with genome editing technologies, analyze trait co-inheritance, benchmark assays in their own laboratories, and many other research applications. MPD’s primary source of funding is NIDA. For this reason, a majority of MPD data is neuro- and behavior-related.
GeneWeaver is a web application for the integrated cross-species analysis of functional genomics data to find convergent evidence from heterogeneous sources. The application consists of a large database of gene sets curated from multiple public data resources and curated submissions, along with a suite of analysis tools designed to allow flexible, customized workflows through web-based interactive analysis or scripted API driven analysis. Gene sets come from multiple widely studied species and include ontology annotations, brain gene expression atlases, systems genetic study results, gene regulatory information, pathway databases, drug interaction databases and many other sources. Users can retrieve, store, analyze and share gene sets through a graded access system. Analysis tools are based on combinatorics and statistical methods for comparing, contrasting and classifying gene sets based on their members.
In this presentation by the OHBM OpenScienceSIG, Tom Shaw and Steffen Bollmann cover how containers can be useful for running the same software on different platforms and sharing analysis pipelines with other researchers. They demonstrate how to build docker containers from scratch, using Neurodocker, and cover how to use containers on an HPC with singularity.
As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers
This lecture covers how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.
As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers
This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.
NWB: An ecosystem for neurophysiology data standardization
Learn how to create a standard extracellular electrophysiology dataset in NWB using Python
Learn how to create a standard calcium imaging dataset in NWB using Python
Learn how to create a standard intracellular electrophysiology dataset in NWB
Learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm
Learn how to build and share extensions in NWB
Learn how to build custom APIs for extension
Learn how to handle writing very large data in PyNWB
Learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB
Learn how to create a standard calcium imaging dataset in NWB using MATLAB
Learn how to create a standard intracellular electrophysiology dataset in NWB
Learn how to handle writing very large data in MatNWB