Skip to main content

Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.

Difficulty level: Intermediate
Duration: 58:06
Speaker: : Paul Triebkorn

In this lesson you will learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper On the Nature of Seizure Dynamics, which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn

Introduction of the Foundations of Machine Learning in Python course - Day 01.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Beginner
Duration: 35:24
Speaker: : Elena Trunz

Optimization for machine learning - Day 02 lecture of the Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 34:52
Speaker: : Moritz Wolter

Linear Algebra for Machine Learning - Day 03 lecture of the Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 57.45
Speaker: : Moritz Wolter

Support Vector Machines -  Day 06 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 53.39
Speaker: : Elena Trunz

Decision Trees and Random Forests -  Day 07 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 1:15:39
Speaker: : Elena Trunz

Clustering and Density Estimation -  Day 08 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 59:35
Speaker: : Elena Trunz

Dimensionality Reduction -  Day 09 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 51:02
Speaker: : Elena Trunz

Introduction to Neural Networks -  Day 10 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 54:12
Speaker: : Moritz Wolter

Introduction to Convolutional Neural Networks  -  Day 11 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 42:07
Speaker: : Moritz Wolter

Initialization, Optimization, and Regularization  -  Day 12 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 42:07
Speaker: : Moritz Wolter

U-Nets for medical Image-Segmentation  -  Day 13 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 16:45
Speaker: : Moritz Wolter

Sequence Processing -  Day 15 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 47:45
Speaker: : Moritz Wolter

This lesson is the first of three hands-on tutorials as part of the workshop Research Workflows for Collaborative Neuroscience. This tutorial goes over how to visualize data with Scanpy, a scalable toolkit for analyzing single-cell gene expression. 

Difficulty level: Intermediate
Duration: 25:26

This hands-on tutorial walks you through DataJoint platform, highlighting features and schema which can be used to build robost neuroscientific pipelines. 

Difficulty level: Beginner
Duration: 26:06
Speaker: : Milagros Marin

In this third and final hands-on tutorial from the Research Workflows for Collaborative Neuroscience workshop, you will learn about workflow orchestration using open source tools like DataJoint and Flyte. 

Difficulty level: Intermediate
Duration: 22:36
Speaker: : Daniel Xenes

This lesson gives an introductory presentation on how data science can help with scientific reproducibility.

Difficulty level: Beginner
Duration:
Speaker: : Michel Dumontier

This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.

Difficulty level: Beginner
Duration: 15:14

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14