FAIR principles and methods currently in development for assessing FAIRness.
Tutorial describing the basic search and navigation features of the Allen Mouse Brain Atlas
Tutorial describing the basic search and navigation features of the Allen Developing Mouse Brain Atlas
This tutorial demonstrates how to use the differential search feature of the Allen Mouse Brain Atlas to find gene markers for different regions of the brain and to visualize this gene expression in three-dimensional space. Differential search is also available for the Allen Developing Mouse Brain Atlas and the Allen Human Brain Atlas.
The Mouse Phenome Database (MPD) provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD ensures rigorous curation of phenotype data and supporting documentation using relevant ontologies and controlled vocabularies. As a repository of curated and integrated data, MPD provides a means to access/re-use baseline data, as well as allows users to identify sensitized backgrounds for making new mouse models with genome editing technologies, analyze trait co-inheritance, benchmark assays in their own laboratories, and many other research applications. MPD’s primary source of funding is NIDA. For this reason, a majority of MPD data is neuro- and behavior-related.
GeneWeaver is a web application for the integrated cross-species analysis of functional genomics data to find convergent evidence from heterogeneous sources. The application consists of a large database of gene sets curated from multiple public data resources and curated submissions, along with a suite of analysis tools designed to allow flexible, customized workflows through web-based interactive analysis or scripted API driven analysis. Gene sets come from multiple widely studied species and include ontology annotations, brain gene expression atlases, systems genetic study results, gene regulatory information, pathway databases, drug interaction databases and many other sources. Users can retrieve, store, analyze and share gene sets through a graded access system. Analysis tools are based on combinatorics and statistical methods for comparing, contrasting and classifying gene sets based on their members.
This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Overview of Day 2 of this course.
"Faster & more sensitive imaging with the MiniFAST" was presented by Caleb Kemere at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.
This module covers fMRI data, including creating and interpreting flat maps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
Running your own Minion session in the MetaCell cloud using jupityr notebooks
Mimicking a kernel crash, and walking through the steps to restore your inputs.
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.