Skip to main content

Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.

Difficulty level: Intermediate
Duration: 58:06
Speaker: : Paul Triebkorn

In this lesson you will learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper On the Nature of Seizure Dynamics, which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn

This lesson gives a primer to project management in a scientific context, with a particular neuroinformatic case study. 

Difficulty level: Beginner
Duration: 19:06
Speaker: : Kelly Shen

In this lesson, you will hear about the current challenges regarding data management, as well as policies and resources aimed to address them. 

Difficulty level: Beginner
Duration: 18:13
Speaker: : Mojib Javadi

This lesson provides an overview of how to manage relationships in a research context, while highlighting the need for effective communication at various levels.

Difficulty level: Beginner
Duration:
Speaker: : Helena Ledmyr

This lecture covers different perspectives on the study of the mental, focusing on the difference between Mind and Brain. 

Difficulty level: Beginner
Duration: 1:16:30

This lesson briefly goes over the outline of the Neuroscience for Machine Learners course. 

Difficulty level: Intermediate
Duration: 3:05
Speaker: : Dan Goodman

This tutorial is part 1 of 2. It aims to provide viewers with an understanding of the fundamentals of R tool. Note: parts 1 and 2 of this tutorial are part of the same YouTube video; part 1 ends at 17:42. 

Difficulty level: Beginner
Duration: 17:42
Speaker: : Edureka

This lesson introduces the practical usage of The Virtual Brain (TVB) in its graphical user interface and via python scripts. In the graphical user interface, you are guided through its data repository, simulator, phase plane exploration tool, connectivity editor, stimulus generator, and the provided analyses. The implemented iPython notebooks of TVB are presented, and since they are public, can be used for further exploration of TVB. 

Difficulty level: Beginner
Duration: 1:12:24
Speaker: : Paul Triebkorn

This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

This tutorial covers the fundamentals of collaborating with Git and GitHub.

Difficulty level: Intermediate
Duration: 2:15:50
Speaker: : Elizabeth DuPre
Course:

This lesson provides a comprehensive introduction to the command line and 50 popular Linux commands. This is a long introduction (nearly 5 hours), but well worth it if you are going to spend a good part of your career working from a terminal, which is likely if you are interested in flexibility, power, and reproducibility in neuroscience research. This lesson is courtesy of freeCodeCamp.

Difficulty level: Beginner
Duration: 5:00:16
Speaker: : Colt Steele
Course:

The Mouse Phenome Database (MPD) provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD ensures rigorous curation of phenotype data and supporting documentation using relevant ontologies and controlled vocabularies. As a repository of curated and integrated data, MPD provides a means to access/re-use baseline data, as well as allows users to identify sensitized backgrounds for making new mouse models with genome editing technologies, analyze trait co-inheritance, benchmark assays in their own laboratories, and many other research applications. MPD’s primary source of funding is NIDA. For this reason, a majority of MPD data is neuro- and behavior-related.

Difficulty level: Beginner
Duration: 55:36
Speaker: : Elissa Chesler

This short video walks you through the steps of publishing a dataset on brainlife, an open-source, free and secure reproducible neuroscience analysis platform.

Difficulty level: Beginner
Duration: 1:18
Speaker: :

This video shows how to use the brainlife.io interface to edit the participants' info file. This file is the ParticipantInfo.json file of the Brain Imaging Data Structure (BIDS).

Difficulty level: Beginner
Duration: 0:34
Speaker: :

This video will document the process of running an app on brainlife, from data staging to archiving of the final data outputs.

Difficulty level: Beginner
Duration: 3:43
Speaker: :

This video will document the process of visualizing the provenance of each step performed to generate a data object on brainlife.

Difficulty level: Beginner
Duration: 0:21
Speaker: :

This video will document the process of downloading and running the "reproduce.sh" script, which will automatically run all of the steps to generate a data object locally on a user's machine.

Difficulty level: Beginner
Duration: 3:44
Speaker: :

This video will document the process of creating a pipeline rule for batch processing on brainlife.

Difficulty level: Intermediate
Duration: 0:57
Speaker: :

This video will document the process of launching a Jupyter Notebook for group-level analyses directly from brainlife.

Difficulty level: Intermediate
Duration: 0:53
Speaker: :