Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.
In this lesson you will learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper On the Nature of Seizure Dynamics, which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.
This lesson gives an introduction to high-performance computing with the Compute Canada network, first providing an overview of use cases for HPC and then a hands-on tutorial. Though some examples might seem specific to the Calcul Québec, all computing clusters in the Compute Canada network share the same software modules and environments.
This talk presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance computing facilities across Canada and around the world.
This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.
As a part of NeuroHackademy 2020, this lecture delves into cloud computing, focusing on Amazon Web Services.
Overview of Day 2 of this course.
This talk compares various sensors and resolutions for in vivo neural recordings.
This lecture introduces neuroscience concepts and methods such as fMRI, visual respones in BOLD data, and the eccentricity of visual receptive fields.
This tutorial walks users through the creation and visualization of activation flat maps from fMRI datasets.
This tutorial demonstrates to users the conventional preprocessing steps when working with BOLD signal datasets from fMRI.
In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB.
This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.
This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets.
In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.
This hands-on tutorial explains how to run your own Minion session in the MetaCell cloud using jupityr notebooks.
In this hands-on analysis tutorial, users will mimic a kernel crash and learn the steps to restore inputs in such a case.
This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging.
This lesson will go through how to extract cells from video that has been cleaned of background noise and motion.
This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time.