Research Resource Identifiers (RRIDs) are ID numbers assigned to help researchers cite key resources (antibodies, model organisms and software projects) in the biomedical literature to improve transparency of research methods.
Computational models provide a framework for integrating data across spatial scales and for exploring hypotheses about the biological mechanisms underlying neuronal and network dynamics. However, as models increase in complexity, additional barriers emerge to the creation, exchange, and re-use of models. Successful projects have created standards for describing complex models in neuroscience and provide open source tools to address these issues. This lecture provides an overview of these projects and make a case for expanded use of resources in support of reproducibility and validation of models against experimental data.
Introduction to the Brain Imaging Data Structure (BIDS): a standard for organizing human neuroimaging datasets. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
NWB: An ecosystem for neurophysiology data standardization
NWB: An ecosystem for neurophysiology data standardization
DAQCORD is a framework for the design, documentation and reporting of data curation methods in order to advance the scientific rigour, reproducibility and analysis of the data. This lecture covers the rationale for developing the framework, the process in which the framework was developed, and ends with a presentation of the framework. While the driving use case for DAQCORD was clinical traumatic brain injury research, the framework is applicable to clinical studies in other domains of clinical neuroscience research.
PyNN is a simulator-independent language for building neuronal network models. The PyNN API aims to support modelling at a high-level of abstraction (populations of neurons, layers, columns and the connections between them) while still allowing access to the details of individual neurons and synapses when required. PyNN provides a library of standard neuron, synapse, and synaptic plasticity models which have been verified to work the same on the different supported simulators. PyNN also provides a set of commonly-used connectivity algorithms (e.g. all-to-all, random, distance-dependent, small-world) but makes it easy to provide your own connectivity in a simulator-independent way. This lecture was part of the 7th SpiNNaker Workshop held 3 - 6 October 2017.
Félix-Antoine Fortin from Calcul Québec gives an introduction to high-performance computing with the Compute Canada network, first providing an overview of use cases for HPC and then a hand-on tutorial. Though some examples might seem specific to the Calcul Québec, all computing clusters in the Compute Canada network share the same software modules and environments.
The lesson was given in the context of the BrainHack School 2020.
The Canadian Open Neuroscience Platform (CONP) Portal is a web interface that facilitates open science for the neuroscience community by simplifying global access to and sharing of datasets and tools. The Portal internalizes the typical cycle of a research project, beginning with data acquisition, followed by data processing with published tools, and ultimately the publication of results with a link to the original dataset.
In this video, Samir Das and Tristan Glatard give a short overview of the main features of the CONP Portal.
Shawn Brown presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance-computing facilities across Canada and around the world.
This talk was given in the context of a Ludmer Centre event in 2019.
This course will teach you AWS basics right through to advanced cloud computing concepts. There are lots of hands-on exercises using an AWS free tier account to give you practical experience with Amazon Web Services. Visual slides and animations will help you gain a deep understanding of Cloud Computing.
This lesson is courtesy of freeCodeCamp.
In this talk the speakers will give a brief introduction of the Fenix Infrastructure and Service Offering, before focusing on Data Safety. The speaker will take the participants through the ETHZ-CSCS offering for EBRAINS and all the HBP Communities highlighting the Infrastructure role in a service implementation in respect of Security. Particular attention will be on showing what tools ETHZ-CSCS provides to a Portal/Service provider such as EBRAINS, MIP/HIP, TVB, NRP amongst others. Finally there will be given a quick glimpse into the future and the role that “multi-tenancy” will play.
EEGLAB is an interactive Matlab toolbox for processing continuous and event-related EEG, MEG and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data. EEGLAB runs under Linux, Unix, Windows, and Mac OS X.