Skip to main content
Course:

BioImage Suite is an integrated image analysis software suite developed at Yale University. BioImage Suite has been extensively used at different labs at Yale since about 2001.

Difficulty level: Beginner
Duration: 01:47
Speaker: : BioImage Suite
Course:

Fibr is an app for quality control of diffusion MRI images from the Healthy Brain Network, a landmark mental health study that is collecting MRI images and other assessment data from 10,000 New York City area children. The purpose of the app is to train a computer algorithm to analyze the Healthy Brain Network dataset. By playing fibr, you are helping to teach the computer which images have sufficiently good quality and which images do not. 

Difficulty level: Beginner
Duration: 02:26
Speaker: : Ariel Rokem

This lecture covers the needs and challenges involved in creating a FAIR ecosystem for neuroimaging research.

Difficulty level: Beginner
Duration: 12:26
Speaker: : Camille Maumet

This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.

Difficulty level: Beginner
Duration: 12:33
Speaker: : David Keator

This lecture covers the processes, benefits, and challenges involved in designing, collecting, and sharing FAIR neuroscience datasets.

Difficulty level: Beginner
Duration: 11:35

This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.

Difficulty level: Beginner
Duration: 12:06
Speaker: : Melanie Ganz

This lecture covers the benefits and difficulties involved when re-using open datasets, and how metadata is important to the process.

Difficulty level: Beginner
Duration: 11:20
Speaker: : Elizabeth DuPre

This lecture provides guidance on the ethical considerations the clinical neuroimaging community faces when applying the FAIR principles to their research. 

Difficulty level: Beginner
Duration: 13:11
Speaker: : Gustav Nilsonne

This lecture covers the ethical implications of the use of functional neuroimaging to assess covert awareness in unconscious patients and was part of the Neuro Day Workshop held by the NeuroSchool of Aix Marseille University.

Difficulty level: Beginner
Duration: 1:00:50
Speaker: : Athena Demertzi

This module covers many of the types of non-invasive neurotech and neuroimaging devices including electroencephalography (EEG), electromyography (EMG), electroneurography (ENG), magnetoencephalography (MEG), and more. 

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning

This introductory lesson welcomes users to the virtual learning series, explaining some of the background behind open-source miniscopes, as well as outlining the rest of the lessons in this course. 

Difficulty level: Beginner
Duration: 16:23

This lesson provides an overview of the Miniscope project, explaining the motivation behind the how and why of Miniscope development, why Miniscopes may be useful for researchers, and the differences between previous and current versions.

Difficulty level: Beginner
Duration: 42:16
Speaker: : Daniel Aharoni

This lesson will go through the theory and practical techniques for implanting a GRIN lens for imaging in mice.

Difficulty level: Beginner
Duration: 1:00:40

This lesson provides instruction on how to build a Miniscope and stream data, including an overview of the software involved.

Difficulty level: Beginner
Duration: 1:04:28
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman
Course:

This Jupyter Book is a series of interactive tutorials about quantitative T1 mapping, powered by qMRLab. Most figures are generated with Plot.ly – you can play with them by hovering your mouse over the data, zooming in (click and drag) and out (double click), moving the sliders, and changing the drop-down options. To view the code that was used to generate the figures in this blog post, hover your cursor in the top left corner of the frame that contains the tutorial and click the checkbox “All cells” in the popup that appears.

Jupyter Lab notebooks of these tutorials are also available through MyBinder, and inline code modification inside the Jupyter Book is provided by Thebelab. For both options, you can modify the code, change the figures, and regenerate the html that was used to create the tutorial below. This Jupyter Book also uses a Script of Scripts (SoS) kernel, allowing us to process the data using qMRLab in MATLAB/Octave and plot the figures with Plot.ly using Python, all within the same Jupyter Notebook.

Difficulty level: Intermediate
Duration:
Speaker: :

This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs. 

Difficulty level: Intermediate
Duration: 50:18
Speaker: : Jeff Grethe

This lecture covers FAIR atlases, including their background and construction, as well as how they can be created in line with the FAIR principles.

Difficulty level: Beginner
Duration: 14:24
Speaker: : Heidi Kleven

This lecture focuses on ontologies for clinical neurosciences.

Difficulty level: Intermediate
Duration: 21:54

This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course. 

Difficulty level: Intermediate
Duration: 5:58
Speaker: : Dan Goodman