Skip to main content

This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging. 

Difficulty level: Intermediate
Duration: 5:02
Speaker: : Mike X. Cohen

This lesson will go through how to extract cells from video that has been cleaned of background noise and motion.

Difficulty level: Beginner
Duration: 01:49:40
Speaker: : Phil Dong

This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time. 

Difficulty level: Intermediate
Duration: 15:01
Speaker: : Mike X. Cohen

This final hands-on analysis tutorial walks users through the last visualization steps in the cellular data.

Difficulty level: Beginner
Duration: 00:27:23
Speaker: : Phil Dong

This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.

Difficulty level: Intermediate
Duration: 5:15
Speaker: : Mike X. Cohen

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data. 

Difficulty level: Intermediate
Duration: 17:08
Speaker: : Mike X. Cohen

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate
Duration: 11:23
Speaker: : Mike X. Cohen

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate
Duration: 22:41
Speaker: : Mike X. Cohen

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate
Duration: 17:19
Speaker: : Mike X. Cohen

This lecture covers infrared LED oblique illumination for studying neuronal circuits in in vitro block-preparations of the spinal cord and brain stem.

Difficulty level: Beginner
Duration: 25:16
Speaker: : Péter Szucs

This lecture covers the application of diffusion MRI for clinical and preclinical studies.

Difficulty level: Beginner
Duration: 33:10
Speaker: : Silvia de Santis

This tutorial walks participants through the application of dynamic causal modelling (DCM) to fMRI data using MATLAB. Participants are also shown various forms of DCM, how to generate and specify different models, and how to fit them to simulated neural and BOLD data.

 

This lesson corresponds to slides 158-187 of the PDF below. 

Difficulty level: Advanced
Duration: 1:22:10

In this hands-on session, you will learn how to explore and work with DataLad datasets, containers, and structures using Jupyter notebooks. 

Difficulty level: Beginner
Duration: 58:05

This video shows how to use the brainlife.io interface to edit the participants' info file. This file is the ParticipantInfo.json file of the Brain Imaging Data Structure (BIDS).

Difficulty level: Beginner
Duration: 0:34
Speaker: :

This quick video presents some of the various visualizers available on brainlife.io

Difficulty level: Beginner
Duration: 1:11
Speaker: :

This video demonstrates each required step for preprocessing T1w anatomical data in brainlife.io.

Difficulty level: Beginner
Duration: 3:28
Speaker: :

In this lesson, you will learn about the Python project Nipype, an open-source, community-developed initiative under the umbrella of NiPy. Nipype provides a uniform interface to existing neuroimaging software and facilitates interaction between these packages within a single workflow.

Difficulty level: Intermediate
Duration: 1:25:05
Speaker: : Satrajit Ghosh

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.

Difficulty level: Intermediate
Duration: 3:09:12
Course:

BioImage Suite is an integrated image analysis software suite developed at Yale University. BioImage Suite has been extensively used at different labs at Yale since about 2001.

Difficulty level: Beginner
Duration: 01:47
Speaker: : BioImage Suite
Course:

Fibr is an app for quality control of diffusion MRI images from the Healthy Brain Network, a landmark mental health study that is collecting MRI images and other assessment data from 10,000 New York City area children. The purpose of the app is to train a computer algorithm to analyze the Healthy Brain Network dataset. By playing fibr, you are helping to teach the computer which images have sufficiently good quality and which images do not. 

Difficulty level: Beginner
Duration: 02:26
Speaker: : Ariel Rokem