Manipulate the default connectome provided with TVB to see how structural lesions effect brain dynamics. In this hands-on session you will insert lesions into the connectome within the TVB graphical user interface. Afterwards the modified connectome will be used for simulations and the resulting activity will be analysed using functional connectivity.
This lecture covers an introduction to connectomics, and image processing tools for the study of connectomics.
This lecture covers acquisition techniques, the physics of MRI, diffusion imaging, prediction using fMRI.
This lecture will provide an overview of neuroimaging techniques and their clinical applications.
Optical imaging offers a look inside the working brain. This lecture takes a look at orientation and ocular dominance columns in the visual cortex, and shows how they can be viewed with calcium imaging.
Functional imaging has led to the discovery of a plethora of visual cortical regions. This lecture introduces functional imaging techniques and their teachings about the visual cortex.
Investigating the structure of synapses with electron microscopy.
This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network.
Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.
Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.
Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.
The lecture covers a brief introduction to neuromorphic engineering, some of the neuromorphic networks that the speaker has developed, and their potential applications, particularly in machine learning.
This primer on optogenetics primer discusses how to manipulate neuronal populations with light at millisecond resolution and offers possible applications such as curing the blind and "playing the piano" with cortical neurons.
Introduction to the course Cellular Mechanisms of Brain Function.
Introduction to the course Cellular Mechanisms of Brain Function.
Ion channels and the movement of ions across the cell membrane.
Action potential initiation and propagation.
Synaptic transmission and neurotransmitters
This lecture covers NeuronUnit, a library that builds upon SciUnit and integrates with several existing neuroinformatics resources to support validating single-neuron models using data gathered by neurophysiologists.
An introduction to the NeuroElectro project, which aims to organize information on cellular neurophysiology. Speaker: Shreejoy Tripathy