Skip to main content

Manipulate the default connectome provided with TVB to see how structural lesions effect brain dynamics. In this hands-on session you will insert lesions into the connectome within the TVB graphical user interface. Afterwards the modified connectome will be used for simulations and the resulting activity will be analysed using functional connectivity.

Difficulty level: Beginner
Duration: 31:22
Speaker: : Paul Triebkorn

Brief introduction to Research Resource Identifiers (RRIDs), persistent and unique identifiers for referencing a research resource. 

Difficulty level: Beginner
Duration: 1:30
Speaker: : Anita Bandrowski

Research Resource Identifiers (RRIDs) are ID numbers assigned to help researchers cite key resources (antibodies, model organisms and software projects) in the biomedical literature to improve transparency of research methods.

Difficulty level: Beginner
Duration: 1:01:36
Speaker: : Maryann Martone

The Brain Imaging Data Structure (BIDS) is a standard prescribing a formal way to name and organize MRI data and metadata in a file system that simplifies communication and collaboration between users and enables easier data validation and software development through using consistent paths and naming for data files.

Difficulty level: Beginner
Duration: 0:56

Neurodata Without Borders (NWB) is a data standard for neurophysiology that provides neuroscientists with a common standard to share, archive, use, and build common analysis tools for neurophysiology data.

Difficulty level: Beginner
Duration: 1:11
Speaker: : Ben Dichter

The Neuroimaging Data Model (NIDM) is a collection of specification documents that define extensions the W3C PROV standard for the domain of human brain mapping. NIDM uses provenance information as means to link components from different stages of the scientific research process from dataset descriptors and computational workflow, to derived data and publication.

Difficulty level: Beginner
Duration: 0:53

Neuroscience Information Exchange (NIX) Format data model allows storing fully annotated scientific datasets, i.e. the data together with rich metadata and their relations in a consistent, comprehensive format. Its aim is to achieve standardization by providing a common data structure and APIs for a multitude of data types and use cases, focused on but not limited to neuroscience. In contrast to most other approaches, the NIX approach is to achieve this flexibility with a minimum set of data model elements.

Difficulty level: Beginner
Duration: 1:03
Speaker: : Thomas Wachtler

Computational models provide a framework for integrating data across spatial scales and for exploring hypotheses about the biological mechanisms underlying neuronal and network dynamics. However, as models increase in complexity, additional barriers emerge to the creation, exchange, and re-use of models. Successful projects have created standards for describing complex models in neuroscience and provide open source tools to address these issues. This lecture provides an overview of these projects and make a case for expanded use of resources in support of reproducibility and validation of models against experimental data.

Difficulty level: Beginner
Duration: 1:00:39
Speaker: : Sharon Crook

Introduction to the Brain Imaging Data Structure (BIDS): a standard for organizing human neuroimaging datasets. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 56:49

NWB: An ecosystem for neurophysiology data standardization

Difficulty level: Beginner
Duration: 29:53
Speaker: : Oliver Ruebel

NWB: An ecosystem for neurophysiology data standardization

Difficulty level: Intermediate
Duration: 29:53
Speaker: : Oliver Ruebel
Course:

The Mouse Phenome Database (MPD) provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD ensures rigorous curation of phenotype data and supporting documentation using relevant ontologies and controlled vocabularies. As a repository of curated and integrated data, MPD provides a means to access/re-use baseline data, as well as allows users to identify sensitized backgrounds for making new mouse models with genome editing technologies, analyze trait co-inheritance, benchmark assays in their own laboratories, and many other research applications. MPD’s primary source of funding is NIDA. For this reason, a majority of MPD data is neuro- and behavior-related.

Difficulty level: Beginner
Duration: 55:36
Speaker: : Elissa Chesler

This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.

Difficulty level: Beginner
Duration: 37:51

Part 1 of 2 of a tutorial on statistical models for neural data

Difficulty level: Beginner
Duration: 1:45:48
Speaker: : Jonathan Pillow

What is the difference between attention and consciousness? This lecture describes the scientific meaning of consciousness, journeys on the search for neural correlates of visual consciousness, and explores the possibility of consciousness in other beings and even non-biological structures.

Difficulty level: Beginner
Duration: 1:10:01
Speaker: : Christof Koch

This lecture covers computational principles that growth cones employ to detect and respond to environmental chemotactic gradients, focusing particularly on growth cone shape dynamics.

Difficulty level: Intermediate
Duration: 26:12
Speaker: : Geoff Goodhill

In this lecture you will learn that in developing mouse somatosensory cortex, endogenous Btbd3 translocate to the cell nucleus in response to neuronal activity and oriented primary dendrites toward active axons in the barrel hollow.

Difficulty level: Intermediate
Duration: 27:32
Speaker: : Tomomi Shimogori

In this presentation, the speaker describes some of their recent efforts to characterize the transcriptome of the developing human brain, and and introduction to the BrainSpan project.

Difficulty level: Intermediate
Duration: 30:45
Speaker: : Nenad Sestan

How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.

Difficulty level: Beginner
Duration: 1:08:45
Speaker: : Clay Reid

Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32