Skip to main content

This lesson is a general overview of overarching concepts in neuroinformatics research, with a particular focus on clinical approaches to defining, measuring, studying, diagnosing, and treating various brain disorders. Also described are the complex, multi-level nature of brain disorders and the data associated with them, from genes and individual cells up to cortical microcircuits and whole-brain network dynamics. Given the heterogeneity of brain disorders and their underlying mechanisms, this lesson lays out a case for multiscale neuroscience data integration.

Difficulty level: Intermediate
Duration: 1:09:33
Speaker: : Sean Hill

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity. 

Difficulty level: Intermediate
Duration: 1:16:10
Speaker: : John Griffiths

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks. 

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

Neuronify is an educational tool meant to create intuition for how neurons and neural networks behave. You can use it to combine neurons with different connections, just like the ones we have in our brain, and explore how changes on single cells lead to behavioral changes in important networks. Neuronify is based on an integrate-and-fire model of neurons. This is one of the simplest models of neurons that exist. It focuses on the spike timing of a neuron and ignores the details of the action potential dynamics. These neurons are modeled as simple RC circuits. When the membrane potential is above a certain threshold, a spike is generated and the voltage is reset to its resting potential. This spike then signals other neurons through its synapses.

Neuronify aims to provide a low entry point to simulation-based neuroscience.

Difficulty level: Beginner
Duration: 01:25
Speaker: : Neuronify

Maximize Your Research With Cloud Workspaces is a talk aimed at researchers who are looking for innovative ways to set up and execute their life science data analyses in a collaborative, extensible, open-source cloud environment. This panel discussion is brought to you by MetaCell and scientists from leading universities who share their experiences of advanced analysis and collaborative learning through the Cloud.


Difficulty level: Beginner
Duration: 55:43

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.

Difficulty level: Intermediate
Duration: 3:09:12

This lecture discusses how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.

Difficulty level: Beginner
Duration: 13:16
Speaker: : Kelly Shen

In this talk, you will learn how works, and how it can be applied to neuroscience data.

Difficulty level: Beginner
Duration: 10:14
Speaker: : Franco Pestilli

As a part of NeuroHackademy 2020, this lecture delves into cloud computing, focusing on Amazon Web Services. 

Difficulty level: Beginner
Duration: 01:43:59

This talk presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance computing facilities across Canada and around the world.

Difficulty level: Beginner
Duration: 56:07
Speaker: : Shawn Brown

This lecture gives an introduction to the INCF Short Course: Introduction to Neuroinformatics. 

Difficulty level: Beginner
Duration: 34:27

Presented by the OHBM OpenScienceSIG, this lesson covers how containers can be useful for running the same software on different platforms and sharing analysis pipelines with other researchers.

Difficulty level: Beginner
Duration: 01:21:59

This lecture covers structured data, databases, federating neuroscience-relevant databases, and ontologies. 

Difficulty level: Beginner
Duration: 1:30:45
Speaker: : Maryann Martone

This lecture covers FAIR atlases, including their background and construction, as well as how they can be created in line with the FAIR principles.

Difficulty level: Beginner
Duration: 14:24
Speaker: : Heidi Kleven

This lecture focuses on ontologies for clinical neurosciences.

Difficulty level: Intermediate
Duration: 21:54

This lesson gives an introductory presentation on how data science can help with scientific reproducibility.

Difficulty level: Beginner
Speaker: : Michel Dumontier

This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.

Difficulty level: Beginner
Duration: 15:14

This lesson introduces concepts and practices surrounding reference atlases for the mouse and rat brains. Additionally, this lesson provides discussion around examples of data systems employed to organize neuroscience data collections in the context of reference atlases as well as analytical workflows applied to the data.

Difficulty level: Beginner
Duration: 03:04:29
Speaker: :