Skip to main content

Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools. Rather than rigid distinctions, in the data science of neuroinformatics, these activities and approaches intersect and interact in dynamic ways. Together with a panel of cutting-edge neuro-data-scientist speakers, we will explore these dynamics

 

This lecture covers how brainlife.io works, and how it can be applied to neuroscience data.

Difficulty level: Beginner
Duration: 10:14
Speaker: : Franco Pestilli

As a part of NeuroHackademy 2020, Tara Madhyastha (University of Washington), Andrew Crabb (AWS), and Ariel Rokem (University of Washington) give a lecture on Cloud Computing, focusing on Amazon Web Services

 

This video is provided by the University of Washington eScience Institute.

 

Difficulty level: Beginner
Duration: 01:43:59
Speaker: :

Overview of the content for Day 1 of this course.

Difficulty level: Beginner
Duration: 00:01:59
Speaker: : Tristan Shuman

Overview of Day 2 of this course.

Difficulty level: Beginner
Duration: 00:03:28
Speaker: : Tristan Shuman

Best practices: the tips and tricks on how to get your Miniscope to work and how to get your experiments off the ground.

Difficulty level: Beginner
Duration: 00:53:34

"Faster & more sensitive imaging with the MiniFAST" was presented by Caleb Kemere at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.

Difficulty level: Beginner
Duration: 00:24:03

"Balancing size & function in compact miniscopes" was presented by Tycho Hoogland at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.

Difficulty level: Beginner
Duration: 00:21:51

"Computational imaging for miniature miniscopes" was presented by Laura Waller at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.

Difficulty level: Beginner
Duration: 00:17:56

This module covers fMRI data, including creating and interpreting flat maps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 7:15
Speaker: : Mike X. Cohen

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 12:15
Speaker: : Mike X. Cohen

"Online 1-photon vs 2-photon calcium imaging data analysis: Current developments and future plans" was presented by Andrea Giovannucci at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.

Difficulty level: Beginner
Duration: 00:21:06

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 12:05
Speaker: : Mike X. Cohen

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 20:12
Speaker: : Mike X. Cohen

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 12:52
Speaker: : Mike X. Cohen

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 13:39
Speaker: : Mike X. Cohen

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 17:54
Speaker: : Mike X. Cohen

"Ensemble fluidity supports memory flexibility during spatial reversal" was presented by William Mau at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.

Difficulty level: Beginner
Duration: 00:19:43

How to start processing the raw imaging data generated with a Miniscope, including developing a usable pipeline and demoing the Minion pipeline

Difficulty level: Beginner
Duration: 00:57:26

The direction of miniature microscopes, including both MetaCell and other groups.

Difficulty level: Beginner
Duration: 00:49:16

Overview of the content for Day 2 of this course.

Difficulty level: Beginner
Duration: 00:11:01
Speaker: : Tristan Shuman