Skip to main content

This lesson visually documents the process of uploading data to brainlife via the command line interface (CLI). 

Difficulty level: Beginner
Duration: 1:28
Speaker: :

This video will document the process of visualizing the provenance of each step performed to generate a data object on brainlife.

Difficulty level: Beginner
Duration: 0:21
Speaker: :

This video will document the process of downloading and running the "reproduce.sh" script, which will automatically run all of the steps to generate a data object locally on a user's machine.

Difficulty level: Beginner
Duration: 3:44
Speaker: :

This brief video walks you through the steps necessary when creating a project on brainlife.io. 

Difficulty level: Beginner
Duration: 1:45
Speaker: :

This brief video rus through how to make an accout on brainlife.io.

Difficulty level: Beginner
Duration: 0:30
Speaker: :

This short video shows how data in a brainlife.io publication can be opened from a DOI inside a published article. The video provides an example of how the DOI deposited on the journal can be opened with a web browser to redirect to the associated data publication on brainlife.io.

Difficulty level: Beginner
Duration: 2:18
Speaker: :

This video will document the process of importing a dataset archived on OpenNeuro from the Datasets tab into a brainlife project.

Difficulty level: Beginner
Duration: 1:06
Speaker: :

This lesson delves into the the structure of one of the brain's most elemental computational units, the neuron, and how said structure influences computational neural network models. 

Difficulty level: Intermediate
Duration: 6:33
Speaker: : Marcus Ghosh

Following the previous lesson on neuronal structure, this lesson discusses neuronal function, particularly focusing on spike triggering and propogation. 

Difficulty level: Intermediate
Duration: 6:58
Speaker: : Marcus Ghosh

In this lesson you will learn how machine learners and neuroscientists construct abstract computational models based on various neurophysiological signalling properties. 

Difficulty level: Intermediate
Duration: 10:52
Speaker: : Dan Goodman

In this lesson, you will learn about some typical neuronal models employed by machine learners and computational neuroscientists, meant to imitate the biophysical properties of real neurons. 

Difficulty level: Intermediate
Duration: 3:12
Speaker: : Dan Goodman

This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course. 

Difficulty level: Intermediate
Duration: 5:58
Speaker: : Dan Goodman

In this lesson, you will learn about how machine learners and computational neuroscientists design and build models of neuronal synapses. 

Difficulty level: Intermediate
Duration: 8:59
Speaker: : Dan Goodman

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course. 

Difficulty level: Intermediate
Duration: 3:51
Speaker: : Dan Goodman

In this lesson, you will learn about the connectome, the collective system of neural pathways in an organism, with a closer look at the neurons, synapses, and connections of particular species. 

Difficulty level: Intermediate
Duration: 6:48
Speaker: : Marcus Ghosh

This lesson delves into the human nervous system and the immense cellular, connectomic, and functional sophistication therein. 

Difficulty level: Intermediate
Duration: 8:41
Speaker: : Marcus Ghosh

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system. 

Difficulty level: Intermediate
Duration: 4:10
Speaker: : Dan Goodman

This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page. 

Difficulty level: Intermediate
Duration: 12:50
Speaker: : Dan Goodman

In this lesson, you will learn more about some of the issues inherent in modeling neural spikes, approaches to ameliorate these problems, and the pros and cons of these approaches. 

Difficulty level: Intermediate
Duration: 5:31
Speaker: : Dan Goodman

 In this lesson, you will learn about some of the many methods to train spiking neural networks (SNNs) with either no attempt to use gradients, or only use gradients in a limited or constrained way. 

Difficulty level: Intermediate
Duration: 5:14
Speaker: : Dan Goodman