Skip to main content

As researchers develop new non-invasive direct-to-consumer technologies that read and stimulate the brain, society must consider the appropriate uses of such devices. Will these brain technologies eventually allow enhancement of abilities beyond human capabilities? In what settings are people using these devices outside the purview of researchers or clinicians? Should consumers be allowed to ‘hack’ their own brain in order to improve performance?

To explore these challenges and the ethical issues raised by advances in do-it-yourself (DIY) neurotechnology, the Emerging Issues Task Force of the International Neuroethics Society organized a virtual panel discussion. The panel discussed neurotechnologies such as transcranial direct current stimulation (tDCS) and electroencephalogram (EEG) headsets and their ability to change the way we understand and alter our brains. Particular attention will be given to the use of neurotechnology by everyday people and the implications this has for regulatory oversight and citizen neuroscience. 

Panelists included:

  • Marcello Ienca, ETH Zurich
  • Karola Kreitmair, University of Wisconsin–Madison
  • Anna Wexler, University of Pennsylvania
  • Ishan Dasgupta, University of Washington (moderator)
Difficulty level: Beginner
Duration: 1:00:59

This module covers many of the types of non-invasive neurotech and neuroimaging devices including Electroencephalography (EEG), Electromyography (EMG), Electroneurography (ENG), Magnetoencephalography (MEG), functional Near-Infrared Spectroscopy (fNRIs), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman

Hierarchical Event Descriptors (HED) fill a major gap in the neuroinformatics standards toolkit, namely the specification of the nature(s) of events and time-limited conditions recorded as having occurred during time series recordings (EEG, MEG, iEEG, fMRI, etc.). We, the HED Working Group, propose a half-day online INCF workshop on the need for, structure of, tools for, and use of HED annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. 

     

    Difficulty level: Beginner
    Duration: 03:37:42
    Speaker: :

    This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

    Difficulty level: Intermediate
    Duration: 50:44
    Speaker: : Caterina Gratton

    Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

    Difficulty level: Advanced
    Duration: 50:28
    Speaker: : Pierre Bellec
    Course:

    Neuronify is an educational tool meant to create intuition for how neurons and neural networks behave. You can use it to combine neurons with different connections, just like the ones we have in our brain, and explore how changes on single cells lead to behavioral changes in important networks. Neuronify is based on an integrate-and-fire model of neurons. This is one of the simplest models of neurons that exist. It focuses on the spike timing of a neuron and ignores the details of the action potential dynamics. These neurons are modeled as simple RC circuits. When the membrane potential is above a certain threshold, a spike is generated and the voltage is reset to its resting potential. This spike then signals other neurons through its synapses.

    Neuronify aims to provide a low entry point to simulation-based neuroscience.

    Difficulty level: Beginner
    Duration: 01:25
    Speaker: : Neuronify

    This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and go through both motivation and process involved in moving your research computing to the cloud. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

    Difficulty level: Intermediate
    Duration: 3:09:12
    Speaker: : Amanda Tan

    As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers. This lecture covers how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.

    Difficulty level: Beginner
    Duration: 13:16
    Speaker: : Kelly Shen

    Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools. Rather than rigid distinctions, in the data science of neuroinformatics, these activities and approaches intersect and interact in dynamic ways. Together with a panel of cutting-edge neuro-data-scientist speakers, we will explore these dynamics

     

    This lecture covers how brainlife.io works, and how it can be applied to neuroscience data.

    Difficulty level: Beginner
    Duration: 10:14
    Speaker: : Franco Pestilli

    As a part of NeuroHackademy 2020, Tara Madhyastha (University of Washington), Andrew Crabb (AWS), and Ariel Rokem (University of Washington) give a lecture on Cloud Computing, focusing on Amazon Web Services

     

    This video is provided by the University of Washington eScience Institute.

     

    Difficulty level: Beginner
    Duration: 01:43:59
    Speaker: :

    Shawn Brown presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance-computing facilities across Canada and around the world.

     

    This talk was given in the context of a Ludmer Centre event in 2019.

     

     

    Difficulty level: Beginner
    Duration: 56:07
    Speaker: :

    This talk highlights a set of platform technologies, software, and data collections that close and shorten the feedback cycle in research. 

    Difficulty level: Beginner
    Duration: 57:52
    Speaker: : Satrajit Ghosh

    An agent for reproducible neuroimaging

    Difficulty level: Beginner
    Duration: 1:00:10
    Speaker: : David Kennedy

    The Human Connectome Project aims to provide an unparalleled compilation of neural data, an interface to graphically navigate this data and the opportunity to achieve never before realized conclusions about the living human brain.

    Difficulty level: Advanced
    Duration: 59:06
    Speaker: : Jennifer Elam

    Tutorial on how to simulate brain tumor brains with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls. Authors: Hannelore Aerts, Michael Schirner, Ben Jeurissen, DIrk Van Roost, Eric Achten, Petra Ritter, Daniele Marinazzo

    Difficulty level: Intermediate
    Duration: 10:01
    Speaker: :

    The tutorial comprises a didactic video and jupyter notebooks (reproducing publication: Falcon et al. 2016 eNeuro). Contributors: Daniele Marinazzo, Petra Ritter, Paul Triebkorn, Ana Solodkin

    Difficulty level: Intermediate
    Duration: 7:43
    Speaker: :

    This presentation by Dr. Michael Schirner population models and phase plane is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc... TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 1:10:41
    Speaker: : Michael Schirner

    This tutorial by Paul Triebkorn on how to simulate using TVB is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 1:29:13
    Speaker: : Paul Triebkorn

    This presentation by Dionysios Perdikis is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging. brain simulation. personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 36:10