Manipulate the default connectome provided with TVB to see how structural lesions effect brain dynamics. In this hands-on session you will insert lesions into the connectome within the TVB graphical user interface. Afterwards the modified connectome will be used for simulations and the resulting activity will be analysed using functional connectivity.
This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture covers structured data, databases, federating neuroscience-relevant databases, ontologies.
Introduction to the Mathematics chapter of Datalabcc's "Foundations in Data Science" series.
Primer on elementary algebra
Primer on systems of linear equations
How calculus relates to optimization
A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.
2nd part of the lecture. Introduction to cell receptors and signalling cascades
GABAergic interneurons and local inhibition on the circuit level.
Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.
Introduction to neurons, synaptic transmission, and ion channels.
Introduction to the origin and differentiation of myelinating cell types, molecular mechanisms defining onset and progression of myelination, demyelination and remyelination after injury.
This lecture covers: integrating information within a network, modulating and controlling networks, functions and dysfunctions of hippocampal networks, and the integrative network controlling sleep and arousal.
This lecture focuses on the comprehension of nociception and pain sensation. It highlights how the somatosensory system and different molecular partners are involved in nociception and how nociception and pain sensation are studied in rodents and humans and the development of pain therapy.