Skip to main content

This lecture on generating TVB ready imaging data by Paul Triebkorn is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture contains an overview of the Australian Electrophysiology Data Analytics Platform (AEDAPT), how it works, how to scale it, and how it fits into the FAIR ecosystem.

Difficulty level: Beginner
Duration: 18:56
Speaker: : Tom Johnstone

As researchers develop new non-invasive direct-to-consumer technologies that read and stimulate the brain, society must consider the appropriate uses of such devices. Will these brain technologies eventually allow enhancement of abilities beyond human capabilities? In what settings are people using these devices outside the purview of researchers or clinicians? Should consumers be allowed to ‘hack’ their own brain in order to improve performance?

To explore these challenges and the ethical issues raised by advances in do-it-yourself (DIY) neurotechnology, the Emerging Issues Task Force of the International Neuroethics Society organized a virtual panel discussion. The panel discussed neurotechnologies such as transcranial direct current stimulation (tDCS) and electroencephalogram (EEG) headsets and their ability to change the way we understand and alter our brains. Particular attention will be given to the use of neurotechnology by everyday people and the implications this has for regulatory oversight and citizen neuroscience. 

Panelists included:

  • Marcello Ienca, ETH Zurich
  • Karola Kreitmair, University of Wisconsin–Madison
  • Anna Wexler, University of Pennsylvania
  • Ishan Dasgupta, University of Washington (moderator)
Difficulty level: Beginner
Duration: 1:00:59

This module covers many of the types of non-invasive neurotech and neuroimaging devices including Electroencephalography (EEG), Electromyography (EMG), Electroneurography (ENG), Magnetoencephalography (MEG), functional Near-Infrared Spectroscopy (fNRIs), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman

Hierarchical Event Descriptors (HED) fill a major gap in the neuroinformatics standards toolkit, namely the specification of the nature(s) of events and time-limited conditions recorded as having occurred during time series recordings (EEG, MEG, iEEG, fMRI, etc.). We, the HED Working Group, propose a half-day online INCF workshop on the need for, structure of, tools for, and use of HED annotation to prepare neuroimaging time series data for storing, sharing, and advanced analysis. 

     

    Difficulty level: Beginner
    Duration: 03:37:42
    Speaker: :

    This lecture covers structured data, databases, federating neuroscience-relevant databases, ontologies. 

    Difficulty level: Beginner
    Duration: 1:30:45
    Speaker: : Maryann Martone

    Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible,  Interoperable, and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been the successes?  What is currently very difficult? Where does neuroscience need to go?

     

    This lecture covers FAIR atlases, from their background, their construction, and how they can be created in line with the FAIR principles.

    Difficulty level: Beginner
    Duration: 14:24
    Speaker: : Heidi Kleven

    This lecture focuses on ontologies for clinical neurosciences.

    Difficulty level: Intermediate
    Duration: 21:54

    Tutorial on how to simulate brain tumor brains with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls. Authors: Hannelore Aerts, Michael Schirner, Ben Jeurissen, DIrk Van Roost, Eric Achten, Petra Ritter, Daniele Marinazzo

    Difficulty level: Intermediate
    Duration: 10:01
    Speaker: :

    The tutorial comprises a didactic video and jupyter notebooks (reproducing publication: Falcon et al. 2016 eNeuro). Contributors: Daniele Marinazzo, Petra Ritter, Paul Triebkorn, Ana Solodkin

    Difficulty level: Intermediate
    Duration: 7:43
    Speaker: :

    This presentation by Dr. Michael Schirner population models and phase plane is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc... TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 1:10:41
    Speaker: : Michael Schirner

    This tutorial by Paul Triebkorn on how to simulate using TVB is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 1:29:13
    Speaker: : Paul Triebkorn

    This presentation by Dionysios Perdikis is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging. brain simulation. personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 36:10

     

    This tutorial on simulating The Virutal Mouse Brain by Patrik Bey is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc... TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 42:43
    Speaker: : Patrik Bey

    This tutorlal on modeling a virtual macaque brain by Julie Courtiol is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 1:00:08
    Speaker: : Julie Courtiol

    This lecture on surface-based simulations and deep brain stimulations by Jil Meier is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 39:05
    Speaker: : Jil Meier

    This lecture on multi-scale entropy by Jil Meier is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 39:05
    Speaker: : Jil Meier

    This lecture on generating 3D brain model outside The Virtual Brain by Michael Schirner is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc... TVB is a full brain simulation platform.

    Difficulty level: Intermediate
    Duration: 1:36:57
    Speaker: : Michael Schirner

    As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers. This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.

    Difficulty level: Beginner
    Duration: 15:14