Skip to main content

In this lesson, you will learn about some typical neuronal models employed by machine learners and computational neuroscientists, meant to imitate the biophysical properties of real neurons. 

Difficulty level: Intermediate
Duration: 3:12
Speaker: : Dan Goodman

This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course. 

Difficulty level: Intermediate
Duration: 5:58
Speaker: : Dan Goodman

This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted. 

Difficulty level: Intermediate
Duration: 7:03
Speaker: : Marcus Ghosh

While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time. 

Difficulty level: Intermediate
Duration: 4:48
Speaker: : Marcus Ghosh

In this lesson, you will learn about how machine learners and computational neuroscientists design and build models of neuronal synapses. 

Difficulty level: Intermediate
Duration: 8:59
Speaker: : Dan Goodman

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course. 

Difficulty level: Intermediate
Duration: 3:51
Speaker: : Dan Goodman

This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page. 

Difficulty level: Intermediate
Duration: 12:50
Speaker: : Dan Goodman

In this lesson, you will learn more about some of the issues inherent in modeling neural spikes, approaches to ameliorate these problems, and the pros and cons of these approaches. 

Difficulty level: Intermediate
Duration: 5:31
Speaker: : Dan Goodman

 In this lesson, you will learn about some of the many methods to train spiking neural networks (SNNs) with either no attempt to use gradients, or only use gradients in a limited or constrained way. 

Difficulty level: Intermediate
Duration: 5:14
Speaker: : Dan Goodman

In this lesson, you will learn how to train spiking neural networks (SNNs) with a surrogate gradient method. 

Difficulty level: Intermediate
Duration: 11:23
Speaker: : Dan Goodman

As the previous lesson of this course described how researchers acquire neural data, this lesson will discuss how to go about interpreting and analysing the data. 

Difficulty level: Intermediate
Duration: 9:24
Speaker: : Marcus Ghosh

In this lesson you will learn about the motivation behind manipulating neural activity, and what forms that may take in various experimental designs. 

Difficulty level: Intermediate
Duration: 8:42
Speaker: : Marcus Ghosh

In this lesson, you will learn about one particular aspect of decision making: reaction times. In other words, how long does it take to take a decision based on a stream of information arriving continuously over time?

Difficulty level: Intermediate
Duration: 6:01
Speaker: : Dan Goodman

In this lesson, you will hear about some of the open issues in the field of neuroscience, as well as a discussion about whether neuroscience works, and how can we know?

Difficulty level: Intermediate
Duration: 6:54
Speaker: : Marcus Ghosh

This lesson discusses a gripping neuroscientific question: why have neurons developed the discrete action potential, or spike, as a principle method of communication? 

Difficulty level: Intermediate
Duration: 9:34
Speaker: : Dan Goodman

This lesson provides an introduction to modeling single neurons, as well as stability analysis of neural models.

Difficulty level: Intermediate
Duration: 1:26:06
Speaker: : Bard Ermentrout

This lesson continues a thorough description of the concepts, theories, and methods involved in the modeling of single neurons. 

Difficulty level: Intermediate
Duration: 1:25:38
Speaker: : Bard Ermentrout

In this lesson you will learn about fundamental neural phenomena such as oscillations and bursting, and the effects these have on cortical networks. 

Difficulty level: Intermediate
Duration: 1:24:30
Speaker: : Bard Ermentrout

This lesson continues discussing properties of neural oscillations and networks. 

Difficulty level: Intermediate
Duration: 1:31:57
Speaker: : Bard Ermentrout

In this lecture, you will learn about rules governing coupled oscillators, neural synchrony in networks, and theoretical assumptions underlying current understanding.

Difficulty level: Intermediate
Duration: 1:26:02
Speaker: : Bard Ermentrout