The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.
This lecture presents the Medical Informatics Platform's data federation in epilepsy.
This lecture highlights the importance of correct annotation and assignment of location, and updated atlas resources to avoid errors in navigation and data interpretation.
We are at the exciting technological stage where it has become feasible to represent the anatomy of an entire human brain at the cellular level. In this presentation, the speaker explains that neuroanatomy in the XXI Century has become an effort towards the virtualization and standardization of brain tissue.
This lecture covers essential features of digital brain models for neuroinformatics.
This presentation covers the neuroinformatics tools and techniques used and their relationship to neuroanatomy for the Allen atlases of the mouse, developing mouse, and mouse connectional atlas.
Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.
Introduction to the Brain Imaging Data Structure (BIDS): a standard for organizing human neuroimaging datasets. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Next generation science with Jupyter. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture on generating TVB ready imaging data by Paul Triebkorn is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.
NWB: An ecosystem for neurophysiology data standardization
Panel discussion by leading scientists, engineers and philosophers discuss what brain-computer interfaces are and the unique scientific and ethical challenges they pose. hosted by Lynne Malcolm from ABC Radio National's All in the Mind program and features:
Panel of experts discuss the virtues and risks of our digital health data being captured and used by others in the age of Facebook, metadata retention laws, Cambridge Analytica and a rapidly evolving neuroscience. The discussion was moderated by Jon Faine, ABC Radio presenter. The panelists were:
DAQCORD is a framework for the design, documentation and reporting of data curation methods in order to advance the scientific rigour, reproducibility and analysis of the data. This lecture covers the rationale for developing the framework, the process in which the framework was developed, and ends with a presentation of the framework. While the driving use case for DAQCORD was clinical traumatic brain injury research, the framework is applicable to clinical studies in other domains of clinical neuroscience research.