Skip to main content

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram. 

Difficulty level: Intermediate
Duration: 5:31
Speaker: : Mike X. Cohen

Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons. 

Difficulty level: Intermediate
Duration: 13:48
Speaker: : Mike X. Cohen

This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

In this lesson, users are shown how to create a spatial map of neuronal orientation tuning. 

Difficulty level: Intermediate
Duration: 13:11
Speaker: : Mike X. Cohen

This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics. 

Difficulty level: Intermediate
Duration: 1:27:18
Speaker: : Dan Felsky

This is a tutorial on using the open-source software PRSice to calculate a set of polygenic risk scores (PRS) for a study sample. Users will also learn how to read PRS into R, visualize distributions, and perform basic association analyses. 

Difficulty level: Intermediate
Duration: 1:53:34
Speaker: : Dan Felsky

This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat. 

Difficulty level: Intermediate
Duration: 1:19:17
Speaker: : Sonny Chen

This tutorial demonstrates how to perform cell-type deconvolution in order to estimate how proportions of cell-types in the brain change in response to various conditions. While these techniques may be useful in addressing a wide range of scientific questions, this tutorial will focus on the cellular changes associated with major depression (MDD). 

Difficulty level: Intermediate
Duration: 1:15:14
Speaker: : Keon Arbabi

This is a tutorial on how to simulate neuronal spiking in brain microcircuit models, as well as how to analyze, plot, and visualize the corresponding data. 

Difficulty level: Intermediate
Duration: 1:39:50
Speaker: : Frank Mazza

This lecture goes into detailed description of how to process workflows in the virtual research environment (VRE), including approaches for standardization, metadata, containerization, and constructing and maintaining scientific pipelines. 

Difficulty level: Intermediate
Duration: 1:03:55
Speaker: : Patrik Bey

In this third and final hands-on tutorial from the Research Workflows for Collaborative Neuroscience workshop, you will learn about workflow orchestration using open source tools like DataJoint and Flyte. 

Difficulty level: Intermediate
Duration: 22:36
Speaker: : Daniel Xenes

Following the previous lesson on neuronal structure, this lesson discusses neuronal function, particularly focusing on spike triggering and propogation. 

Difficulty level: Intermediate
Duration: 6:58
Speaker: : Marcus Ghosh

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course. 

Difficulty level: Intermediate
Duration: 3:51
Speaker: : Dan Goodman

Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.

Difficulty level: Intermediate
Duration: 58:06
Speaker: : Paul Triebkorn

This tutorial covers the fundamentals of collaborating with Git and GitHub.

Difficulty level: Intermediate
Duration: 2:15:50
Speaker: : Elizabeth DuPre

This lesson provides an overview of Jupyter notebooks, Jupyter lab, and Binder, as well as their applications within the field of neuroimaging, particularly when it comes to the writing phase of your research. 

Difficulty level: Intermediate
Duration: 50:28
Speaker: : Elizabeth DuPre

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.

Difficulty level: Intermediate
Duration: 3:09:12

In this session the Medical Informatics Platform (MIP) federated analytics is presented. The current and future analytical tools implemented in the MIP will be detailed along with the constructs, tools, processes, and restrictions that formulate the solution provided. MIP is a platform providing advanced federated analytics for diagnosis and research in clinical neuroscience research. It is targeting clinicians, clinical scientists and clinical data scientists. It is designed to help adopt advanced analytics, explore harmonized medical data of neuroimaging, neurophysiological and medical records as well as research cohort datasets, without transferring original clinical data. It can be perceived as a virtual database that seamlessly presents aggregated data from distributed sources, provides access and analyze imaging and clinical data, securely stored in hospitals, research archives and public databases. It leverages and re-uses decentralized patient data and research cohort datasets, without transferring original data. Integrated statistical analysis tools and machine learning algorithms are exposed over harmonized, federated medical data.

Difficulty level: Intermediate
Duration: 15:05