Tutorial on how to simulate brain tumor brains with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls. Authors: Hannelore Aerts, Michael Schirner, Ben Jeurissen, DIrk Van Roost, Eric Achten, Petra Ritter, Daniele Marinazzo

Difficulty level: Intermediate

Duration: 10:01

Speaker: :

The tutorial comprises a didactic video and jupyter notebooks (reproducing publication: Falcon et al. 2016 eNeuro). Contributors: Daniele Marinazzo, Petra Ritter, Paul Triebkorn, Ana Solodkin

Difficulty level: Intermediate

Duration: 7:43

Speaker: :

Course:

The goal of computational modeling in behavioral and psychological science is using mathematical models to characterize behavioral (or neural) data. Over the past decade, this practice has revolutionized social psychological science (and neuroscience) by allowing researchers to formalize theories as constrained mathematical models and test specific hypotheses to explain unobservable aspects of complex social cognitive processes and behaviors. This course is composed of 4 modules in the format of Jupyter Notebooks. This course comprises lecture-based, discussion-based, and lab-based instruction. At least one-third of class sessions will be hands-on. We will discuss relevant book chapters and journal articles, and work with simulated and real data using the Python programming language (no prior programming experience necessary) as we survey some selected areas of research at the intersection of computational modeling and social behavior. These selected topics will span a broad set of social psychological abilities including (1) learning from and for others, (2) learning about others, and (3) social influence on decision-making and mental states. Rhoads, S. A. & Gan, L. (2022). Computational models of human social behavior and neuroscience - An open educational course and Jupyter Book to advance computational training. *Journal of Open Source Education*, *5*(47), 146. https://doi.org/10.21105/jose.00146

Difficulty level: Intermediate

Duration:

Speaker: :

Course:

This book was written with the goal of introducing researchers and students in a variety of research fields to the intersection of data science and neuroimaging. This book reflects our own experience of doing research at the intersection of data science and neuroimaging and it is based on our experience working with students and collaborators who come from a variety of backgrounds and have a variety of reasons for wanting to use data science approaches in their work. The tools and ideas that we chose to write about are all tools and ideas that we have used in some way in our own research. Many of them are tools that we use on a daily basis in our work. This was important to us for a few reasons: the first is that we want to teach people things that we ourselves find useful. Second, it allowed us to write the book with a focus on solving specific analysis tasks. For example, in many of the chapters you will see that we walk you through ideas while implementing them in code, and with data. We believe that this is a good way to learn about data analysis, because it provides a connecting thread from scientific questions through the data and its representation to implementing specific answers to these questions. Finally, we find these ideas compelling and fruitful. That’s why we were drawn to them in the first place. We hope that our enthusiasm about the ideas and tools described in this book will be infectious enough to convince the readers of their value.

Difficulty level: Intermediate

Duration:

Speaker: :

Course:

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate

Duration: 5:17

Speaker: : Mike X. Cohen

Course:

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate

Duration: 11:37

Speaker: : Mike X. Cohen

Course:

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate

Duration: 5:31

Speaker: : Mike X. Cohen

Course:

Difficulty level: Intermediate

Duration: 13:48

Speaker: : Mike X. Cohen

Course:

Difficulty level: Intermediate

Duration: 12:16

Speaker: : Mike X. Cohen

Course:

Difficulty level: Intermediate

Duration: 13:11

Speaker: : Mike X. Cohen

Course:

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate

Duration: 8:21

Speaker: : Mike X. Cohen

Course:

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate

Duration: 22:01

Speaker: : Mike X. Cohen

Course:

This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.

Difficulty level: Intermediate

Duration: 11:20

Speaker: : Mike X. Cohen

Course:

Difficulty level: Intermediate

Duration: 20:39

Speaker: : Mike X. Cohen

This lecture 1/15 is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 0:40

Speaker: : Florence I. Kleberg

This lecture (2/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:23

Speaker: : Florence I. Kleberg

This lecture (3/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:20

Speaker: : Florence I. Kleberg

This lecture (4/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:08

Speaker: : Florence I. Kleberg

This lecture (5/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:18

Speaker: : Florence I. Kleberg

This lecture (6/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures. Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:26

Speaker: : Florence I. Kleberg

- Programming Languages (31)
- Electroencephalography (EEG) (7)
- Calcium imaging (7)
- Deep learning (4)
- Connectivity (1)
- Reinforcement learning (1)
- Neuroimaging (18)
- Brain networks (1)
- (-) Machine learning (1)
- Image processing (1)
- Image registration (1)
- Electrophysiology (7)
- Image segmentation (1)
- Standards and best practices (7)
- (-) Tools (2)
- Psychology (1)
- Neuronal plasticity (15)
- (-) General neuroscience (6)
- (-) Computational neuroscience (22)
- Statistics (2)
- (-) Computer Science (1)
- Data science (1)