This lecture presents the Medical Informatics Platform's data federation in epilepsy.
This lecture aims to help researchers, students, and health care professionals understand the place for neuroinformatics in the patient journey using the exemplar of an epilepsy patient.
This talk introduces data sharing initiatives in Epilepsy, particularly across Europe.
In this lesson, users will learn about human brain signals as measured by electroencephalography (EEG), as well as associated neural signatures such as steady state visually evoked potentials (SSVEPs) and alpha oscillations.
This is a continuation of the talk on the cellular mechanisms of neuronal communication, this time at the level of brain microcircuits and associated global signals like those measureable by electroencephalography (EEG). This lecture also discusses EEG biomarkers in mental health disorders, and how those cortical signatures may be simulated digitally.
This lecture gives an overview of how to prepare and preprocess neuroimaging (EEG/MEG) data for use in TVB.
This lesson provides a brief introduction to the Computational Modeling of Neuronal Plasticity.
In this lesson, you will be introducted to a type of neuronal model known as the leaky integrate-and-fire (LIF) model.
This lesson goes over various potential inputs to neuronal synapses, loci of neural communication.
This lesson describes the how and why behind implementing integration time steps as part of a neuronal model.
In this lesson, you will learn about neural spike trains which can be characterized as having a Poisson distribution.
This lesson covers spike-rate adaptation, the process by which a neuron's firing pattern decays to a low, steady-state frequency during the sustained encoding of a stimulus.
This lesson provides a brief explanation of how to implement a neuron's refractory period in a computational model.
In this lesson, you will learn a computational description of the process which tunes neuronal connectivity strength, spike-timing-dependent plasticity (STDP).
This lesson reviews theoretical and mathematical descriptions of correlated spike trains.
This lesson investigates the effect of correlated spike trains on spike-timing dependent plasticity (STDP).
This lesson goes over synaptic normalisation, the homeostatic process by which groups of weighted inputs scale up or down their biases.
In this lesson, you will learn about the intrinsic plasticity of single neurons.
This lesson covers short-term facilitation, a process whereby a neuron's synaptic transmission is enhanced for a short (sub-second) period.
This lesson describes short-term depression, a reduction of synaptic information transfer between neurons.