This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.
This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.
In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram.
Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons.
This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.
In this lesson, users are shown how to create a spatial map of neuronal orientation tuning.
This lesson provides an introduction to biologically detailed computational modelling of neural dynamics, including neuron membrane potential simulation and F-I curves.
In this lesson, users learn how to use MATLAB to build an adaptive exponential integrate and fire (AdEx) neuron model.
In this lesson, users learn about the practical differences between MATLAB scripts and functions, as well as how to embed their neuronal simulation into a callable function.
This lesson teaches users how to generate a frequency-current (F-I) curve, which describes the function that relates the net synaptic current (I) flowing into a neuron to its firing rate (F).
This lecture discusses the the importance and need for data sharing in clinical neuroscience.
This lecture gives insights into the Medical Informatics Platform's current and future data privacy model.
This lecture gives an overview on the European Health Dataspace.
This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).
This lesson corresponds to slides 65-90 of the PDF below.
This lesson is the first of three hands-on tutorials as part of the workshop Research Workflows for Collaborative Neuroscience. This tutorial goes over how to visualize data with Scanpy, a scalable toolkit for analyzing single-cell gene expression.
In this third and final hands-on tutorial from the Research Workflows for Collaborative Neuroscience workshop, you will learn about workflow orchestration using open source tools like DataJoint and Flyte.
This lecture aims to help researchers, students, and health care professionals understand the place for neuroinformatics in the patient journey using the exemplar of an epilepsy patient.
This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs.
This lecture describes how to build research workflows, including a demonstrate using DataJoint Elements to build data pipelines.
Along the example of a patient with bi-temporal epilepsy, we show step by step how to develop a Virtual Epileptic Patient (VEP) brain model and integrate patient-specific information such as brain connectivity, epileptogenic zone and MRI lesions. The patient's brain network model is then evaluated via simulation, data fitting and mathematical analysis. This lecture demonstrates how to develop novel personalized strategies towards therapy and intervention using TVB.