Course:

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate

Duration: 5:17

Speaker: : Mike X. Cohen

Course:

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate

Duration: 11:37

Speaker: : Mike X. Cohen

Course:

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram.

Difficulty level: Intermediate

Duration: 5:31

Speaker: : Mike X. Cohen

Course:

Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons.

Difficulty level: Intermediate

Duration: 13:48

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.

Difficulty level: Intermediate

Duration: 12:16

Speaker: : Mike X. Cohen

Course:

In this lesson, users are shown how to create a spatial map of neuronal orientation tuning.

Difficulty level: Intermediate

Duration: 13:11

Speaker: : Mike X. Cohen

Course:

This lesson provides an introduction to biologically detailed computational modelling of neural dynamics, including neuron membrane potential simulation and F-I curves.

Difficulty level: Intermediate

Duration: 8:21

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn how to use MATLAB to build an adaptive exponential integrate and fire (AdEx) neuron model.

Difficulty level: Intermediate

Duration: 22:01

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn about the practical differences between MATLAB scripts and functions, as well as how to embed their neuronal simulation into a callable function.

Difficulty level: Intermediate

Duration: 11:20

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how to generate a frequency-current (F-I) curve, which describes the function that relates the net synaptic current (I) flowing into a neuron to its firing rate (F).

Difficulty level: Intermediate

Duration: 20:39

Speaker: : Mike X. Cohen

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment.

This lesson corresponds to slides 1-64 in the PDF below.

Difficulty level: Intermediate

Duration: 1:28:14

Speaker: : Andreea Diaconescu

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

This lesson corresponds to slides 65-90 of the PDF below.

Difficulty level: Intermediate

Duration: 1:15:04

Speaker: : Daniel Hauke

This lesson briefly goes over the outline of the Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:05

Speaker: : Dan Goodman

This lesson delves into the the structure of one of the brain's most elemental computational units, the neuron, and how said structure influences computational neural network models.

Difficulty level: Intermediate

Duration: 6:33

Speaker: : Marcus Ghosh

Following the previous lesson on neuronal structure, this lesson discusses neuronal function, particularly focusing on spike triggering and propogation.

Difficulty level: Intermediate

Duration: 6:58

Speaker: : Marcus Ghosh

In this lesson you will learn how machine learners and neuroscientists construct abstract computational models based on various neurophysiological signalling properties.

Difficulty level: Intermediate

Duration: 10:52

Speaker: : Dan Goodman

This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted.

Difficulty level: Intermediate

Duration: 7:03

Speaker: : Marcus Ghosh

While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time.

Difficulty level: Intermediate

Duration: 4:48

Speaker: : Marcus Ghosh

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:51

Speaker: : Dan Goodman

This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page.

Difficulty level: Intermediate

Duration: 12:50

Speaker: : Dan Goodman

- Clinical neuroinformatics (7)
- Standards and Best Practices (2)
- Bayesian networks (2)
- Neuroimaging (21)
- Machine learning (10)
- EBRAINS RI (2)
- Neuromorphic engineering (3)
- Standards and best practices (4)
- (-) Tools (11)
- Workflows (3)
- Animal models (1)
- Brain-hardware interfaces (1)
- Clinical neuroscience (3)
- (-) General neuroscience (16)
- (-) Computational neuroscience (33)
- Statistics (5)
- Computer Science (2)
- Genomics (8)
- (-) Data science (4)
- Open science (5)
- Project management (1)