Skip to main content

Tutorial on how to simulate brain tumor brains with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls. Authors: Hannelore Aerts, Michael Schirner, Ben Jeurissen, DIrk Van Roost, Eric Achten, Petra Ritter, Daniele Marinazzo

Difficulty level: Intermediate
Duration: 10:01
Speaker: :

The tutorial comprises a didactic video and jupyter notebooks (reproducing publication: Falcon et al. 2016 eNeuro). Contributors: Daniele Marinazzo, Petra Ritter, Paul Triebkorn, Ana Solodkin

Difficulty level: Intermediate
Duration: 7:43
Speaker: :

Introduction to the Brain Imaging Data Structure (BIDS): a standard for organizing human neuroimaging datasets. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 56:49

Learn how to create a standard extracellular electrophysiology dataset in NWB using Python

Difficulty level: Intermediate
Duration: 23:10
Speaker: : Ryan Ly

Learn how to create a standard calcium imaging dataset in NWB using Python

Difficulty level: Intermediate
Duration: 31:04
Speaker: : Ryan Ly

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:23
Speaker: : Pamela Baker

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:22
Speaker: : Pamela Baker
Course:

The goal of computational modeling in behavioral and psychological science is using mathematical models to characterize behavioral (or neural) data. Over the past decade, this practice has revolutionized social psychological science (and neuroscience) by allowing researchers to formalize theories as constrained mathematical models and test specific hypotheses to explain unobservable aspects of complex social cognitive processes and behaviors. This course is composed of 4 modules in the format of Jupyter Notebooks. This course comprises lecture-based, discussion-based, and lab-based instruction. At least one-third of class sessions will be hands-on. We will discuss relevant book chapters and journal articles, and work with simulated and real data using the Python programming language (no prior programming experience necessary) as we survey some selected areas of research at the intersection of computational modeling and social behavior. These selected topics will span a broad set of social psychological abilities including (1) learning from and for others, (2) learning about others, and (3) social influence on decision-making and mental states. Rhoads, S. A. & Gan, L. (2022). Computational models of human social behavior and neuroscience - An open educational course and Jupyter Book to advance computational training.  ​​​Journal of Open Source Education5(47), 146. https://doi.org/10.21105/jose.00146

 

Difficulty level: Intermediate
Duration:
Speaker: :