Course:

This lesson provides an introduction to biologically detailed computational modelling of neural dynamics, including neuron membrane potential simulation and F-I curves.

Difficulty level: Intermediate

Duration: 8:21

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn how to use MATLAB to build an adaptive exponential integrate and fire (AdEx) neuron model.

Difficulty level: Intermediate

Duration: 22:01

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn about the practical differences between MATLAB scripts and functions, as well as how to embed their neuronal simulation into a callable function.

Difficulty level: Intermediate

Duration: 11:20

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how to generate a frequency-current (F-I) curve, which describes the function that relates the net synaptic current (I) flowing into a neuron to its firing rate (F).

Difficulty level: Intermediate

Duration: 20:39

Speaker: : Mike X. Cohen

Course:

This lesson is a general overview of overarching concepts in neuroinformatics research, with a particular focus on clinical approaches to defining, measuring, studying, diagnosing, and treating various brain disorders. Also described are the complex, multi-level nature of brain disorders and the data associated with them, from genes and individual cells up to cortical microcircuits and whole-brain network dynamics. Given the heterogeneity of brain disorders and their underlying mechanisms, this lesson lays out a case for multiscale neuroscience data integration.

Difficulty level: Intermediate

Duration: 1:09:33

Speaker: : Sean Hill

Course:

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity.

Difficulty level: Intermediate

Duration: 1:16:10

Speaker: : John Griffiths

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment.

This lesson corresponds to slides 1-64 in the PDF below.

Difficulty level: Intermediate

Duration: 1:28:14

Speaker: : Andreea Diaconescu

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

This lesson corresponds to slides 65-90 of the PDF below.

Difficulty level: Intermediate

Duration: 1:15:04

Speaker: : Daniel Hauke

This tutorial provides instruction on how to simulate brain tumors with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls.

Difficulty level: Intermediate

Duration: 10:01

The tutorial on modelling strokes in TVB includes a didactic video and jupyter notebooks (reproducing publication: Falcon et al. 2016 eNeuro).

Difficulty level: Intermediate

Duration: 7:43

This tutorial covers the fundamentals of collaborating with Git and GitHub.

Difficulty level: Intermediate

Duration: 2:15:50

Speaker: : Elizabeth DuPre

Course:

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks.

Difficulty level: Intermediate

Duration: 50:44

Speaker: : Caterina Gratton

Course:

The goal of computational modeling in behavioral and psychological science is using mathematical models to characterize behavioral (or neural) data. Over the past decade, this practice has revolutionized social psychological science (and neuroscience) by allowing researchers to formalize theories as constrained mathematical models and test specific hypotheses to explain unobservable aspects of complex social cognitive processes and behaviors. This course is composed of 4 modules in the format of Jupyter Notebooks. This course comprises lecture-based, discussion-based, and lab-based instruction. At least one-third of class sessions will be hands-on. We will discuss relevant book chapters and journal articles, and work with simulated and real data using the Python programming language (no prior programming experience necessary) as we survey some selected areas of research at the intersection of computational modeling and social behavior. These selected topics will span a broad set of social psychological abilities including (1) learning from and for others, (2) learning about others, and (3) social influence on decision-making and mental states. Rhoads, S. A. & Gan, L. (2022). Computational models of human social behavior and neuroscience - An open educational course and Jupyter Book to advance computational training. *Journal of Open Source Education*, *5*(47), 146. https://doi.org/10.21105/jose.00146

Difficulty level: Intermediate

Duration:

Speaker: :

Course:

This book was written with the goal of introducing researchers and students in a variety of research fields to the intersection of data science and neuroimaging. This book reflects our own experience of doing research at the intersection of data science and neuroimaging and it is based on our experience working with students and collaborators who come from a variety of backgrounds and have a variety of reasons for wanting to use data science approaches in their work. The tools and ideas that we chose to write about are all tools and ideas that we have used in some way in our own research. Many of them are tools that we use on a daily basis in our work. This was important to us for a few reasons: the first is that we want to teach people things that we ourselves find useful. Second, it allowed us to write the book with a focus on solving specific analysis tasks. For example, in many of the chapters you will see that we walk you through ideas while implementing them in code, and with data. We believe that this is a good way to learn about data analysis, because it provides a connecting thread from scientific questions through the data and its representation to implementing specific answers to these questions. Finally, we find these ideas compelling and fruitful. That’s why we were drawn to them in the first place. We hope that our enthusiasm about the ideas and tools described in this book will be infectious enough to convince the readers of their value.

Difficulty level: Intermediate

Duration:

Speaker: :

- Bayesian networks (2)
- Clinical neuroinformatics (2)
- Standards and Best Practices (1)
- Neuroimaging (20)
- Machine learning (1)
- Standards and best practices (4)
- (-) Tools (2)
- Workflows (2)
- Clinical neuroscience (1)
- General neuroscience (6)
- (-) Computational neuroscience (7)
- Statistics (3)
- (-) Computer Science (2)
- Genomics (8)
- Data science (3)
- Open science (4)