Skip to main content

This lesson provides a brief introduction to the Computational Modeling of Neuronal Plasticity.

Difficulty level: Intermediate
Duration: 0:40

In this lesson, you will be introducted to a type of neuronal model known as the leaky integrate-and-fire (LIF) model.

Difficulty level: Intermediate
Duration: 1:23

This lesson goes over various potential inputs to neuronal synapses, loci of neural communication.

Difficulty level: Intermediate
Duration: 1:20

This lesson describes the how and why behind implementing integration time steps as part of a neuronal model.

Difficulty level: Intermediate
Duration: 1:08

In this lesson, you will learn about neural spike trains which can be characterized as having a Poisson distribution.

Difficulty level: Intermediate
Duration: 1:18

This lesson covers spike-rate adaptation, the process by which a neuron's firing pattern decays to a low, steady-state frequency during the sustained encoding of a stimulus.

Difficulty level: Intermediate
Duration: 1:26

This lesson provides a brief explanation of how to implement a neuron's refractory period in a computational model.

Difficulty level: Intermediate
Duration: 0:42

In this lesson, you will learn a computational description of the process which tunes neuronal connectivity strength, spike-timing-dependent plasticity (STDP).

Difficulty level: Intermediate
Duration: 2:40

This lesson reviews theoretical and mathematical descriptions of correlated spike trains.

Difficulty level: Intermediate
Duration: 2:54

This lesson investigates the effect of correlated spike trains on spike-timing dependent plasticity (STDP).

Difficulty level: Intermediate
Duration: 1:43

This lesson goes over synaptic normalisation, the homeostatic process by which groups of weighted inputs scale up or down their biases.

Difficulty level: Intermediate
Duration: 2:58

In this lesson, you will learn about the intrinsic plasticity of single neurons.

Difficulty level: Intermediate
Duration: 2:08

This lesson covers short-term facilitation, a process whereby a neuron's synaptic transmission is enhanced for a short (sub-second) period.

Difficulty level: Intermediate
Duration: 1:58

This lesson describes short-term depression, a reduction of synaptic information transfer between neurons.

Difficulty level: Intermediate
Duration: 1:40

This lesson briefly wraps up the course on Computational Modeling of Neuronal Plasticity.

Difficulty level: Intermediate
Duration: 0:37

This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs. 

Difficulty level: Intermediate
Duration: 50:18
Speaker: : Jeff Grethe

This lecture focuses on ontologies for clinical neurosciences.

Difficulty level: Intermediate
Duration: 21:54

This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted. 

Difficulty level: Intermediate
Duration: 7:03
Speaker: : Marcus Ghosh

This lesson discusses a gripping neuroscientific question: why have neurons developed the discrete action potential, or spike, as a principle method of communication? 

Difficulty level: Intermediate
Duration: 9:34
Speaker: : Dan Goodman

This lesson explains the fundamental principles of neuronal communication, such as neuronal spiking, membrane potentials, and cellular excitability, and how these electrophysiological features of the brain may be modelled and simulated digitally. 

Difficulty level: Intermediate
Duration: 1:20:42
Speaker: : Etay Hay