Skip to main content

In this lesson, users will learn about human brain signals as measured by electroencephalography (EEG), as well as associated neural signatures such as steady state visually evoked potentials (SSVEPs) and alpha oscillations. 

Difficulty level: Intermediate
Duration: 8:51
Speaker: : Mike X. Cohen

This lecture describes the principles of EEG electrode placement in both 2- and 3-dimensional formats. 

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

This tutorial walks users through performing Fourier Transform (FFT) spectral analysis of a single EEG channel using MATLAB. 

Difficulty level: Intermediate
Duration: 13:39
Speaker: : Mike X. Cohen

This tutorial builds on the previous lesson's demonstration of spectral analysis of one EEG channel. Here, users will learn how to compute and visualize spectral power from all EEG channels using MATLAB. 

Difficulty level: Intermediate
Duration: 12:34
Speaker: : Mike X. Cohen

In this lesson, users will learn more about the steady-state visually evoked potential (SSEVP), as well as how to create and interpret topographical maps derived from such studies. 

Difficulty level: Intermediate
Duration: 9:10
Speaker: : Mike X. Cohen

This lesson teaches users how to extract edogenous brain waves from EEG data, specifically oscillations constrained to the 8-12 Hz frequency band, conventionally named alpha. 

Difficulty level: Intermediate
Duration: 13:23
Speaker: : Mike X. Cohen

In the final lesson of this module, users will learn how to correlate endogenous alpha power with SSVEP amplitude from EEG data using MATLAB.

Difficulty level: Intermediate
Duration: 12:36
Speaker: : Mike X. Cohen

This lesson provides an introduction to biologically detailed computational modelling of neural dynamics, including neuron membrane potential simulation and F-I curves. 

Difficulty level: Intermediate
Duration: 8:21
Speaker: : Mike X. Cohen

In this lesson, users learn how to use MATLAB to build an adaptive exponential integrate and fire (AdEx) neuron model. 

Difficulty level: Intermediate
Duration: 22:01
Speaker: : Mike X. Cohen

In this lesson, users learn about the practical differences between MATLAB scripts and functions, as well as how to embed their neuronal simulation into a callable function.  

Difficulty level: Intermediate
Duration: 11:20
Speaker: : Mike X. Cohen

This lesson teaches users how to generate a frequency-current (F-I) curve, which describes the function that relates the net synaptic current (I) flowing into a neuron to its firing rate (F). 

Difficulty level: Intermediate
Duration: 20:39
Speaker: : Mike X. Cohen

This is a continuation of the talk on the cellular mechanisms of neuronal communication, this time at the level of brain microcircuits and associated global signals like those measureable by electroencephalography (EEG). This lecture also discusses EEG biomarkers in mental health disorders, and how those cortical signatures may be simulated digitally.

Difficulty level: Intermediate
Duration: 1:11:04
Speaker: : Etay Hay

This is an in-depth guide on EEG signals and their interaction within brain microcircuits. Participants are also shown techniques and software for simulating, analyzing, and visualizing these signals.

Difficulty level: Intermediate
Duration: 1:30:41
Speaker: : Frank Mazza

This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health. 

Difficulty level: Intermediate
Duration: 1:47:22

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices. 

Difficulty level: Intermediate
Duration: 1:39:04

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity. 

Difficulty level: Intermediate
Duration: 1:16:10
Speaker: : John Griffiths

Along the example of a patient with bi-temporal epilepsy, we show step by step how to develop a Virtual Epileptic Patient (VEP) brain model and integrate patient-specific information such as brain connectivity, epileptogenic zone and MRI lesions. The patient's brain network model is then evaluated via simulation, data fitting and mathematical analysis. This lecture demonstrates how to develop novel personalized strategies towards therapy and intervention using TVB.

Difficulty level: Intermediate
Duration: 48:57
Speaker: : Julie Courtiol

This lecture focuses on higher-level simulation scenarios using stimulation protocols. We demonstrate how to build stimulation patterns in TVB, and use them in a simulation to induced activity dissipating into experimentally known resting-state networks in human and mouse brain, a well as to obtain EEG recordings reproducing empirical findings of other researchers.

Difficulty level: Intermediate
Duration: 47:14
Speaker: : Andreas Spiegler

Tutorial on how to simulate brain tumor brains with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls. Authors: Hannelore Aerts, Michael Schirner, Ben Jeurissen, DIrk Van Roost, Eric Achten, Petra Ritter, Daniele Marinazzo

Difficulty level: Intermediate
Duration: 10:01
Speaker: :

This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton