This tutorial covers the fundamentals of collaborating with Git and GitHub.
This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.
This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks.
This lesson gives an introduction to the central concepts of machine learning, and how they can be applied in Python using the scikit-learn package.
This lecture covers the rationale for developing the DAQCORD, a framework for the design, documentation, and reporting of data curation methods in order to advance the scientific rigour, reproducibility, and analysis of data.