In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB.
This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.
This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets.
In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.
This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging.
This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time.
This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.
In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data.
This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.
This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.
This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.
This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat.
This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.
Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.
This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks.
This lesson gives an introduction to the central concepts of machine learning, and how they can be applied in Python using the scikit-learn package.
In this lesson, you will learn about the Python project Nipype, an open-source, community-developed initiative under the umbrella of NiPy. Nipype provides a uniform interface to existing neuroimaging software and facilitates interaction between these packages within a single workflow.
This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.
This tutorial provides instruction on how to interact with and leverage Python packages to get the most out of Python's suite of available tools for the manipulation, management, analysis, and visualization of neuroscientific data.
This Jupyter Book is a series of interactive tutorials about quantitative T1 mapping, powered by qMRLab. Most figures are generated with Plot.ly – you can play with them by hovering your mouse over the data, zooming in (click and drag) and out (double click), moving the sliders, and changing the drop-down options. To view the code that was used to generate the figures in this blog post, hover your cursor in the top left corner of the frame that contains the tutorial and click the checkbox “All cells” in the popup that appears.
Jupyter Lab notebooks of these tutorials are also available through MyBinder, and inline code modification inside the Jupyter Book is provided by Thebelab. For both options, you can modify the code, change the figures, and regenerate the html that was used to create the tutorial below. This Jupyter Book also uses a Script of Scripts (SoS) kernel, allowing us to process the data using qMRLab in MATLAB/Octave and plot the figures with Plot.ly using Python, all within the same Jupyter Notebook.