Skip to main content

Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 2:15:50
Speaker: : Elizabeth DuPre

Introduction to the central concepts of machine learning, and how they can be applied in Python using the Scikit-learn Package. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 2:22:28
Speaker: : Jake Vanderplas

DAQCORD is a framework for the design, documentation and reporting of data curation methods in order to advance the scientific rigour, reproducibility and analysis of the data. This lecture covers the rationale for developing the framework, the process in which the framework was developed, and ends with a presentation of the framework. While the driving use case for DAQCORD was clinical traumatic brain injury research, the framework is applicable to clinical studies in other domains of clinical neuroscience research.

Difficulty level: Intermediate
Duration: 17:08
Speaker: : Ari Ercole

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram. 

Difficulty level: Intermediate
Duration: 5:31
Speaker: : Mike X. Cohen

Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons. 

Difficulty level: Intermediate
Duration: 13:48
Speaker: : Mike X. Cohen

This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

In this lesson, users are shown how to create a spatial map of neuronal orientation tuning. 

Difficulty level: Intermediate
Duration: 13:11
Speaker: : Mike X. Cohen

This tutorial demonstrates how to perform cell-type deconvolution in order to estimate how proportions of cell-types in the brain change in response to various conditions. While these techniques may be useful in addressing a wide range of scientific questions, this tutorial will focus on the cellular changes associated with major depression (MDD). 

Difficulty level: Intermediate
Duration: 1:15:14
Speaker: : Keon Arbabi

This is an in-depth guide on EEG signals and their interaction within brain microcircuits. Participants are also shown techniques and software for simulating, analyzing, and visualizing these signals.

Difficulty level: Intermediate
Duration: 1:30:41
Speaker: : Frank Mazza

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

Similarity Network Fusion (SNF) is a computational method for data integration across various kinds of measurements, aimed at taking advantage of the common as well as complementary information in different data types. This workshop walks participants through running SNF on EEG and genomic data using RStudio.

Difficulty level: Intermediate
Duration: 1:21:38
Speaker: : Dan Felsky