Course:

In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB.

Difficulty level: Intermediate

Duration: 20:12

Speaker: : Mike X. Cohen

Course:

This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.

Difficulty level: Intermediate

Duration: 12:52

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets.

Difficulty level: Intermediate

Duration: 13:39

Speaker: : Mike X. Cohen

Course:

In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.

Difficulty level: Intermediate

Duration: 17:54

Speaker: : Mike X. Cohen

Course:

This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging.

Difficulty level: Intermediate

Duration: 5:02

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time.

Difficulty level: Intermediate

Duration: 15:01

Speaker: : Mike X. Cohen

Course:

This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.

Difficulty level: Intermediate

Duration: 5:15

Speaker: : Mike X. Cohen

Course:

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data.

Difficulty level: Intermediate

Duration: 17:08

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate

Duration: 11:23

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate

Duration: 22:41

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate

Duration: 17:19

Speaker: : Mike X. Cohen

This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics.

Difficulty level: Intermediate

Duration: 1:27:18

Speaker: : Dan Felsky

This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat.

Difficulty level: Intermediate

Duration: 1:19:17

Speaker: : Sonny Chen

This tutorial demonstrates how to perform cell-type deconvolution in order to estimate how proportions of cell-types in the brain change in response to various conditions. While these techniques may be useful in addressing a wide range of scientific questions, this tutorial will focus on the cellular changes associated with major depression (MDD).

Difficulty level: Intermediate

Duration: 1:15:14

Speaker: : Keon Arbabi

This is an in-depth guide on EEG signals and their interaction within brain microcircuits. Participants are also shown techniques and software for simulating, analyzing, and visualizing these signals.

Difficulty level: Intermediate

Duration: 1:30:41

Speaker: : Frank Mazza

Course:

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity.

Difficulty level: Intermediate

Duration: 1:16:10

Speaker: : John Griffiths

In this third and final hands-on tutorial from the *Research Workflows for Collaborative Neuroscience *workshop, you will learn about workflow orchestration using open source tools like DataJoint and Flyte.

Difficulty level: Intermediate

Duration: 22:36

Speaker: : Daniel Xenes

This lecture describes how to build research workflows, including a demonstrate using DataJoint Elements to build data pipelines.

Difficulty level: Intermediate

Duration: 47:00

Speaker: : Dimitri Yatsenko

Course:

This video will document the process of creating a pipeline rule for batch processing on brainlife.

Difficulty level: Intermediate

Duration: 0:57

Speaker: :

This lesson describes how DataLad allows you to track and mange both your data and analysis code, thereby facilitating reliable, reproducible, and shareable research.

Difficulty level: Intermediate

Duration: 59:34

Speaker: : Yaroslav O. Halchenko

- Clinical neuroinformatics (5)
- Standards and Best Practices (1)
- Bayesian networks (1)
- Notebooks (1)
- (-) Neuroimaging (19)
- Machine learning (4)
- EBRAINS RI (2)
- Standards and best practices (4)
- Tools (11)
- Workflows (4)
- Animal models (1)
- (-) Clinical neuroscience (2)
- General neuroscience (8)
- Computational neuroscience (29)
- Statistics (3)
- Computer Science (1)
- Genomics (6)
- Data science (4)
- Open science (5)
- Project management (1)