Skip to main content

This lesson introduces TVB-multi-scale extensions and other TVB tools which facilitate modeling and analyses of multi-scale data. 

Difficulty level: Intermediate
Duration: 36:10

This tutorial introduces The Virtual Mouse Brain (TVMB), walking users through the necessary steps for performing simulation operations on animal brain data. 

Difficulty level: Intermediate
Duration: 42:43
Speaker: : Patrik Bey

In this tutorial, you will learn the necessary steps in modeling the brain of one of the most commonly studied animals among non-human primates, the macaque. 

Difficulty level: Intermediate
Duration: 1:00:08
Speaker: : Julie Courtiol

This lecture delves into cortical (i.e., surface-based) brain simulations, as well as subcortical (i.e., deep brain) stimulations, covering the definitions, motivations, and implementations of both. 

Difficulty level: Intermediate
Duration: 39:05
Speaker: : Jil Meier

This lecture provides an introduction to entropy in general, and multi-scale entropy (MSE) in particular, highlighting the potential clinical applications of the latter. 

Difficulty level: Intermediate
Duration: 39:05
Speaker: : Jil Meier

This lecture gives an overview of how to prepare and preprocess neuroimaging (EEG/MEG) data for use in TVB.  

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn

In this lecture, you will learn about various neuroinformatic resources which allow for 3D reconstruction of brain models. 

Difficulty level: Intermediate
Duration: 1:36:57
Speaker: : Michael Schirner

This lecture provides an general introduction to epilepsy, as well as why and how TVB can prove useful in building and testing epileptic models. 

Difficulty level: Intermediate
Duration: 37:12
Speaker: : Julie Courtiol

This lesson provides an overview of The Virtual Brain integrated workflows on EBRAINS.

Difficulty level: Intermediate
Duration: 32:21
Speaker: : Petra Ritter

This lesson walks users through the Image Processing Pipeline, an integral part of the TVB on EBRAINS integrated workflows.

Difficulty level: Intermediate
Duration: 24:31
Speaker: : Michael Schirner

This lesson gives an overview of The Virtual Brain simulator and its integration into the Human Brain Project Cloud and EBRAINS infrastructure.

Difficulty level: Intermediate
Duration: 24:55
Speaker: : Lia Domide

In this lesson, users will get an overview of the EBRAINS integrated Fast TVB, a C implementation of TVB that is orders of magnitude faster than the original Python TVB, and capable of performing parallelizable simulations in the cloud.

Difficulty level: Intermediate
Duration: 8:38
Speaker: : Michael Schirner

In this lesson you will learn about the Bayesian Virtual Epileptic Patient (BVEP), a research use case using TVB supported on the EBRAINS infrastructure.

Difficulty level: Intermediate
Duration: 15:39
Speaker: : Meysam Hashemi

This lesson gives a brief overview of the multi-scale co-simulation between TVB-NEST and Elephant on the EBRAINS infrastructure.

Difficulty level: Intermediate
Duration: 6:05
Speaker: : Wouter Klijn

In this lesson, you will learn about the process of constructing models for TVB automatically on the EBRAINS infrastructure.

Difficulty level: Intermediate
Duration: 23:11

This lecture covers the rationale for developing the DAQCORD, a framework for the design, documentation, and reporting of data curation methods in order to advance the scientific rigour, reproducibility, and analysis of data.

Difficulty level: Intermediate
Duration: 17:08
Speaker: : Ari Ercole

The Medical Informatics Platform (MIP) is a platform providing federated analytics for diagnosis and research in clinical neuroscience research. The federated analytics is possible thanks to a distributed engine that executes computations and transfers information between the members of the federation (hospital nodes). In this talk the speaker will describe the process of designing and implementing new analytical tools, i.e. statistical and machine learning algorithms.  Mr. Sakellariou will further describe the environment in which these federated algorithms run, the challenges and the available tools, the principles that guide its design and the followed general methodology for each new algorithm. One of the most important challenges which are faced is to design these tools in a way that does not compromise the privacy of the clinical data involved. The speaker will show how to address the main questions when designing such algorithms: how to decompose and distribute the computations and what kind of information to exchange between nodes, in order to comply with the privacy constraint mentioned above. Finally, also the subject of validating these federated algorithms will be briefly touched.

Difficulty level: Intermediate
Duration: 20:26
Speaker: : Jason Skellariou