Skip to main content

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram. 

Difficulty level: Intermediate
Duration: 5:31
Speaker: : Mike X. Cohen

Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons. 

Difficulty level: Intermediate
Duration: 13:48
Speaker: : Mike X. Cohen

This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

In this lesson, users are shown how to create a spatial map of neuronal orientation tuning. 

Difficulty level: Intermediate
Duration: 13:11
Speaker: : Mike X. Cohen

In this lesson, users will learn about human brain signals as measured by electroencephalography (EEG), as well as associated neural signatures such as steady state visually evoked potentials (SSVEPs) and alpha oscillations. 

Difficulty level: Intermediate
Duration: 8:51
Speaker: : Mike X. Cohen

This lecture describes the principles of EEG electrode placement in both 2- and 3-dimensional formats. 

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

This tutorial walks users through performing Fourier Transform (FFT) spectral analysis of a single EEG channel using MATLAB. 

Difficulty level: Intermediate
Duration: 13:39
Speaker: : Mike X. Cohen

This tutorial builds on the previous lesson's demonstration of spectral analysis of one EEG channel. Here, users will learn how to compute and visualize spectral power from all EEG channels using MATLAB. 

Difficulty level: Intermediate
Duration: 12:34
Speaker: : Mike X. Cohen

In this lesson, users will learn more about the steady-state visually evoked potential (SSEVP), as well as how to create and interpret topographical maps derived from such studies. 

Difficulty level: Intermediate
Duration: 9:10
Speaker: : Mike X. Cohen

This lesson teaches users how to extract edogenous brain waves from EEG data, specifically oscillations constrained to the 8-12 Hz frequency band, conventionally named alpha. 

Difficulty level: Intermediate
Duration: 13:23
Speaker: : Mike X. Cohen

In the final lesson of this module, users will learn how to correlate endogenous alpha power with SSVEP amplitude from EEG data using MATLAB.

Difficulty level: Intermediate
Duration: 12:36
Speaker: : Mike X. Cohen

This is the first of two workshops on reproducibility in science, during which participants are introduced to concepts of FAIR and open science. After discussing the definition of and need for FAIR science, participants are walked through tutorials on installing and using Github and Docker, the powerful, open-source tools for versioning and publishing code and software, respectively.

Difficulty level: Intermediate
Duration: 1:20:58

This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics. 

Difficulty level: Intermediate
Duration: 1:27:18
Speaker: : Dan Felsky

This is a tutorial on using the open-source software PRSice to calculate a set of polygenic risk scores (PRS) for a study sample. Users will also learn how to read PRS into R, visualize distributions, and perform basic association analyses. 

Difficulty level: Intermediate
Duration: 1:53:34
Speaker: : Dan Felsky

This tutorial demonstrates how to perform cell-type deconvolution in order to estimate how proportions of cell-types in the brain change in response to various conditions. While these techniques may be useful in addressing a wide range of scientific questions, this tutorial will focus on the cellular changes associated with major depression (MDD). 

Difficulty level: Intermediate
Duration: 1:15:14
Speaker: : Keon Arbabi

This is an in-depth guide on EEG signals and their interaction within brain microcircuits. Participants are also shown techniques and software for simulating, analyzing, and visualizing these signals.

Difficulty level: Intermediate
Duration: 1:30:41
Speaker: : Frank Mazza

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity. 

Difficulty level: Intermediate
Duration: 1:16:10
Speaker: : John Griffiths

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course. 

Difficulty level: Intermediate
Duration: 3:51
Speaker: : Dan Goodman