Skip to main content

In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB. 

Difficulty level: Intermediate
Duration: 20:12
Speaker: : Mike X. Cohen

This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.

Difficulty level: Intermediate
Duration: 12:52
Speaker: : Mike X. Cohen

This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets. 

Difficulty level: Intermediate
Duration: 13:39
Speaker: : Mike X. Cohen

In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.

Difficulty level: Intermediate
Duration: 17:54
Speaker: : Mike X. Cohen

This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging. 

Difficulty level: Intermediate
Duration: 5:02
Speaker: : Mike X. Cohen

This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time. 

Difficulty level: Intermediate
Duration: 15:01
Speaker: : Mike X. Cohen

This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.

Difficulty level: Intermediate
Duration: 5:15
Speaker: : Mike X. Cohen

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data. 

Difficulty level: Intermediate
Duration: 17:08
Speaker: : Mike X. Cohen

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate
Duration: 11:23
Speaker: : Mike X. Cohen

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate
Duration: 22:41
Speaker: : Mike X. Cohen

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate
Duration: 17:19
Speaker: : Mike X. Cohen

This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat. 

Difficulty level: Intermediate
Duration: 1:19:17
Speaker: : Sonny Chen

This tutorial provides instruction on how to interact with and leverage Python packages to get the most out of Python's suite of available tools for the manipulation, management, analysis, and visualization of neuroscientific data. 

Difficulty level: Intermediate
Duration: 1:26:02
Speaker: : Ariel Rokem

Learn how to create a standard extracellular electrophysiology dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 23:10
Speaker: : Ryan Ly

Learn how to create a standard calcium imaging dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 31:04
Speaker: : Ryan Ly

In this tutorial, you will learn how to create a standard intracellular electrophysiology dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 20:23
Speaker: : Pamela Baker

In this tutorial, you will learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm.

Difficulty level: Intermediate
Duration: 27:18
Speaker: : Oliver Ruebel

In this tutorial, users learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB.

Difficulty level: Intermediate
Duration: 45:46
Speaker: : Ben Dichter

Learn how to create a standard calcium imaging dataset in NWB using MATLAB.

Difficulty level: Intermediate
Duration: 39:10
Speaker: : Ben Dichter

Learn how to create a standard intracellular electrophysiology dataset in NWB.

Difficulty level: Intermediate
Duration: 20:22
Speaker: : Pamela Baker