Course:

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate

Duration: 5:17

Speaker: : Mike X. Cohen

Course:

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate

Duration: 11:37

Speaker: : Mike X. Cohen

Course:

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram.

Difficulty level: Intermediate

Duration: 5:31

Speaker: : Mike X. Cohen

Course:

Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons.

Difficulty level: Intermediate

Duration: 13:48

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.

Difficulty level: Intermediate

Duration: 12:16

Speaker: : Mike X. Cohen

Course:

In this lesson, users are shown how to create a spatial map of neuronal orientation tuning.

Difficulty level: Intermediate

Duration: 13:11

Speaker: : Mike X. Cohen

Course:

This lecture introduces neuroscience concepts and methods such as fMRI, visual respones in BOLD data, and the eccentricity of visual receptive fields.

Difficulty level: Intermediate

Duration: 7:15

Speaker: : Mike X. Cohen

Course:

This tutorial walks users through the creation and visualization of activation flat maps from fMRI datasets.

Difficulty level: Intermediate

Duration: 12:15

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates to users the conventional preprocessing steps when working with BOLD signal datasets from fMRI.

Difficulty level: Intermediate

Duration: 12:05

Speaker: : Mike X. Cohen

Course:

In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB.

Difficulty level: Intermediate

Duration: 20:12

Speaker: : Mike X. Cohen

Course:

This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.

Difficulty level: Intermediate

Duration: 12:52

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets.

Difficulty level: Intermediate

Duration: 13:39

Speaker: : Mike X. Cohen

Course:

In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.

Difficulty level: Intermediate

Duration: 17:54

Speaker: : Mike X. Cohen

Course:

This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging.

Difficulty level: Intermediate

Duration: 5:02

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time.

Difficulty level: Intermediate

Duration: 15:01

Speaker: : Mike X. Cohen

Course:

This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.

Difficulty level: Intermediate

Duration: 5:15

Speaker: : Mike X. Cohen

Course:

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data.

Difficulty level: Intermediate

Duration: 17:08

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate

Duration: 11:23

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate

Duration: 22:41

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate

Duration: 17:19

Speaker: : Mike X. Cohen

- Artificial Intelligence (1)
- Notebooks (1)
- Provenance (1)
- EBRAINS RI (6)
- Animal models (1)
- Brain-hardware interfaces (1)
- (-) Clinical neuroscience (20)
- (-) General neuroscience (14)
- General neuroinformatics (1)
- Computational neuroscience (51)
- Statistics (5)
- (-) Computer Science (3)
- Genomics (8)
- Data science
(9)
- Open science (5)
- Project management (1)
- Neuroethics (3)