Skip to main content

This lecture gives an overview of how to prepare and preprocess neuroimaging (EEG/MEG) data for use in TVB.  

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn

This lesson is a general overview of overarching concepts in neuroinformatics research, with a particular focus on clinical approaches to defining, measuring, studying, diagnosing, and treating various brain disorders. Also described are the complex, multi-level nature of brain disorders and the data associated with them, from genes and individual cells up to cortical microcircuits and whole-brain network dynamics. Given the heterogeneity of brain disorders and their underlying mechanisms, this lesson lays out a case for multiscale neuroscience data integration.

Difficulty level: Intermediate
Duration: 1:09:33
Speaker: : Sean Hill

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity. 

Difficulty level: Intermediate
Duration: 1:16:10
Speaker: : John Griffiths

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks. 

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

This lecture goes into detailed description of how to process workflows in the virtual research environment (VRE), including approaches for standardization, metadata, containerization, and constructing and maintaining scientific pipelines. 

Difficulty level: Intermediate
Duration: 1:03:55
Speaker: : Patrik Bey

This video will document the process of creating a pipeline rule for batch processing on brainlife.

Difficulty level: Intermediate
Duration: 0:57
Speaker: :

This video will document the process of launching a Jupyter Notebook for group-level analyses directly from brainlife.

Difficulty level: Intermediate
Duration: 0:53
Speaker: :

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.

Difficulty level: Intermediate
Duration: 3:09:12

This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs. 

Difficulty level: Intermediate
Duration: 50:18
Speaker: : Jeff Grethe

This lecture focuses on ontologies for clinical neurosciences.

Difficulty level: Intermediate
Duration: 21:54

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

Following the previous lesson on neuronal structure, this lesson discusses neuronal function, particularly focusing on spike triggering and propogation. 

Difficulty level: Intermediate
Duration: 6:58
Speaker: : Marcus Ghosh

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system. 

Difficulty level: Intermediate
Duration: 4:10
Speaker: : Dan Goodman

This lesson discusses a gripping neuroscientific question: why have neurons developed the discrete action potential, or spike, as a principle method of communication? 

Difficulty level: Intermediate
Duration: 9:34
Speaker: : Dan Goodman

Learn how to create a standard extracellular electrophysiology dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 23:10
Speaker: : Ryan Ly

Learn how to create a standard calcium imaging dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 31:04
Speaker: : Ryan Ly

In this tutorial, you will learn how to create a standard intracellular electrophysiology dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 20:23
Speaker: : Pamela Baker

In this tutorial, you will learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm.

Difficulty level: Intermediate
Duration: 27:18
Speaker: : Oliver Ruebel

In this tutorial, users learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB.

Difficulty level: Intermediate
Duration: 45:46
Speaker: : Ben Dichter