Skip to main content

This lecture gives an overview of how to prepare and preprocess neuroimaging (EEG/MEG) data for use in TVB.  

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn

This video will document the process of creating a pipeline rule for batch processing on brainlife.

Difficulty level: Intermediate
Duration: 0:57
Speaker: :

This video will document the process of launching a Jupyter Notebook for group-level analyses directly from brainlife.

Difficulty level: Intermediate
Duration: 0:53
Speaker: :

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.

Difficulty level: Intermediate
Duration: 3:09:12

This tutorial provides instruction on how to simulate brain tumors with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls.

Difficulty level: Intermediate
Duration: 10:01

The tutorial on modelling strokes in TVB includes a didactic video and jupyter notebooks (reproducing publication: Falcon et al. 2016 eNeuro).

Difficulty level: Intermediate
Duration: 7:43

This lesson introduces population models and the phase plane, and is part of the The Virtual Brain (TVB) Node 10 Series, a 4-day workshop dedicated to learning about the full brain simulation platform TVB, as well as brain imaging, brain simulation, personalised brain models, and TVB use cases.

Difficulty level: Intermediate
Duration: 1:10:41
Speaker: : Michael Schirner

In this tutorial, you will learn how to run a typical TVB simulation. 

Difficulty level: Intermediate
Duration: 1:29:13
Speaker: : Paul Triebkorn

This lesson introduces TVB-multi-scale extensions and other TVB tools which facilitate modeling and analyses of multi-scale data. 

Difficulty level: Intermediate
Duration: 36:10

This tutorial introduces The Virtual Mouse Brain (TVMB), walking users through the necessary steps for performing simulation operations on animal brain data. 

Difficulty level: Intermediate
Duration: 42:43
Speaker: : Patrik Bey

In this tutorial, you will learn the necessary steps in modeling the brain of one of the most commonly studied animals among non-human primates, the macaque. 

Difficulty level: Intermediate
Duration: 1:00:08
Speaker: : Julie Courtiol

This lecture delves into cortical (i.e., surface-based) brain simulations, as well as subcortical (i.e., deep brain) stimulations, covering the definitions, motivations, and implementations of both. 

Difficulty level: Intermediate
Duration: 39:05
Speaker: : Jil Meier

This lecture provides an introduction to entropy in general, and multi-scale entropy (MSE) in particular, highlighting the potential clinical applications of the latter. 

Difficulty level: Intermediate
Duration: 39:05
Speaker: : Jil Meier

In this lecture, you will learn about various neuroinformatic resources which allow for 3D reconstruction of brain models. 

Difficulty level: Intermediate
Duration: 1:36:57
Speaker: : Michael Schirner

This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page. 

Difficulty level: Intermediate
Duration: 12:50
Speaker: : Dan Goodman

This lesson discusses a gripping neuroscientific question: why have neurons developed the discrete action potential, or spike, as a principle method of communication? 

Difficulty level: Intermediate
Duration: 9:34
Speaker: : Dan Goodman