Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.

Difficulty level: Intermediate

Duration: 58:06

Speaker: : Paul Triebkorn

Course:

This lesson gives an introduction to the central concepts of machine learning, and how they can be applied in Python using the scikit-learn package.

Difficulty level: Intermediate

Duration: 2:22:28

Speaker: : Jake Vanderplas

This is the Introductory Module to the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition.

Difficulty level: Intermediate

Duration: 50:17

Speaker: : Yann LeCun and Alfredo Canziani

This module covers the concepts of gradient descent and the backpropagation algorithm and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:51:03

Speaker: : Yann LeCun

This lecture covers concepts associated with neural nets, including rotation and squashing, and is a part of the Deep Learning Course at New York University's Center for Data Science (CDS).

Difficulty level: Intermediate

Duration: 1:01:53

Speaker: : Alfredo Canziani

This lecture covers the concept of neural nets training (tools, classification with neural nets, and PyTorch implementation) and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:05:47

Speaker: : Alfredo Canziani

This lecture covers the concept of parameter sharing: recurrent and convolutional nets and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:59:47

Speaker: : Yann LeCun and Alfredo Canziani

This lecture covers the concept of convolutional nets in practice and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 51:40

Speaker: : Yann LeCun

This lecture discusses the concept of natural signals properties and the convolutional nets in practice and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:09:12

Speaker: : Alfredo Canziani

This lecture covers the concept of recurrent neural networks: vanilla and gated (LSTM) and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:05:36

Speaker: : Alfredo Canziani

This lecture is a foundationational lecture for the concept of energy-based models with a particular focus on the joint embedding method and latent variable energy-based models (LV-EBMs) and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:51:30

Speaker: : Yann LeCun

This lecture covers the concept of inference in latent variable energy based models (LV-EBMs) and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:01:04

Speaker: : Alfredo Canziani

This lecture is a foundationational lecture for the concept of energy-based models with a particular focus on the joint embedding method and latent variable energy based models (LV-EBMs) and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:48:53

Speaker: : Yann LeCun

This tutorial covers the concept of training latent variable energy based models (LV-EBMs) and is is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate

Duration: 1:04:48

Speaker: : Alfredo Canziani

Course:

This lesson is a general overview of overarching concepts in neuroinformatics research, with a particular focus on clinical approaches to defining, measuring, studying, diagnosing, and treating various brain disorders. Also described are the complex, multi-level nature of brain disorders and the data associated with them, from genes and individual cells up to cortical microcircuits and whole-brain network dynamics. Given the heterogeneity of brain disorders and their underlying mechanisms, this lesson lays out a case for multiscale neuroscience data integration.

Difficulty level: Intermediate

Duration: 1:09:33

Speaker: : Sean Hill

This is a continuation of the talk on the cellular mechanisms of neuronal communication, this time at the level of brain microcircuits and associated global signals like those measureable by electroencephalography (EEG). This lecture also discusses EEG biomarkers in mental health disorders, and how those cortical signatures may be simulated digitally.

Difficulty level: Intermediate

Duration: 1:11:04

Speaker: : Etay Hay

This lecture provides an introduction to entropy in general, and multi-scale entropy (MSE) in particular, highlighting the potential clinical applications of the latter.

Difficulty level: Intermediate

Duration: 39:05

Speaker: : Jil Meier

Course:

This lecture covers the rationale for developing the DAQCORD, a framework for the design, documentation, and reporting of data curation methods in order to advance the scientific rigour, reproducibility, and analysis of data.

Difficulty level: Intermediate

Duration: 17:08

Speaker: : Ari Ercole

Course:

This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health.

Difficulty level: Intermediate

Duration: 1:47:22

Speaker: : Erin Dickie and John Griffiths

Course:

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.

Difficulty level: Intermediate

Duration: 1:39:04

Speaker: : Erin Dickie and John Griffiths

- Electroencephalography (EEG) (9)
- (-) Clinical neuroinformatics (4)
- Standards and Best Practices (2)
- Bayesian networks (2)
- Neuroimaging (20)
- (-) Machine learning (1)
- Tools (7)
- Workflows (2)
- Clinical neuroscience (2)
- General neuroscience (5)
- Computational neuroscience (16)
- Statistics (3)
- Computer Science (1)
- Genomics (8)
- Data science (2)
- Open science (4)