Course:

This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.

Difficulty level: Intermediate

Duration: 12:52

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets.

Difficulty level: Intermediate

Duration: 13:39

Speaker: : Mike X. Cohen

Course:

In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.

Difficulty level: Intermediate

Duration: 17:54

Speaker: : Mike X. Cohen

Course:

This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging.

Difficulty level: Intermediate

Duration: 5:02

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time.

Difficulty level: Intermediate

Duration: 15:01

Speaker: : Mike X. Cohen

Course:

This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.

Difficulty level: Intermediate

Duration: 5:15

Speaker: : Mike X. Cohen

Course:

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data.

Difficulty level: Intermediate

Duration: 17:08

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate

Duration: 11:23

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate

Duration: 22:41

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate

Duration: 17:19

Speaker: : Mike X. Cohen

This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics.

Difficulty level: Intermediate

Duration: 1:27:18

Speaker: : Dan Felsky

This lesson is an overview of transcriptomics, from fundamental concepts of the central dogma and RNA sequencing at the single-cell level, to how genetic expression underlies diversity in cell phenotypes.

Difficulty level: Intermediate

Duration: 1:29:08

Speaker: : Shreejoy Tripathy

This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat.

Difficulty level: Intermediate

Duration: 1:19:17

Speaker: : Sonny Chen

In this third and final hands-on tutorial from the *Research Workflows for Collaborative Neuroscience *workshop, you will learn about workflow orchestration using open source tools like DataJoint and Flyte.

Difficulty level: Intermediate

Duration: 22:36

Speaker: : Daniel Xenes

Course:

This video will document the process of creating a pipeline rule for batch processing on brainlife.

Difficulty level: Intermediate

Duration: 0:57

Speaker: :

This lesson briefly goes over the outline of the Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:05

Speaker: : Dan Goodman

This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted.

Difficulty level: Intermediate

Duration: 7:03

Speaker: : Marcus Ghosh

While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time.

Difficulty level: Intermediate

Duration: 4:48

Speaker: : Marcus Ghosh

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:51

Speaker: : Dan Goodman

This lesson describes spike timing-dependent plasticity (STDP), a biological process that adjusts the strength of connections between neurons in the brain, and how one can implement or mimic this process in a computational model. You will also find links for practical exercises at the bottom of this page.

Difficulty level: Intermediate

Duration: 12:50

Speaker: : Dan Goodman

- Clinical neuroinformatics (4)
- Standards and Best Practices (2)
- Bayesian networks (2)
- Notebooks (1)
- Neuroimaging (21)
- Machine learning (12)
- Neuromorphic engineering (3)
- Tools (7)
- Workflows (2)
- Animal models (1)
- Brain-hardware interfaces (1)
- Clinical neuroscience (2)
- (-) General neuroscience (14)
- Computational neuroscience (24)
- Statistics (5)
- Computer Science (2)
- Genomics (8)
- Data science (2)
- Open science (4)