Course:

This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health.

Difficulty level: Intermediate

Duration: 1:47:22

Speaker: : Erin Dickie and John Griffiths

Course:

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.

Difficulty level: Intermediate

Duration: 1:39:04

Speaker: : Erin Dickie and John Griffiths

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system.

Difficulty level: Intermediate

Duration: 4:10

Speaker: : Dan Goodman

Course:

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks.

Difficulty level: Intermediate

Duration: 50:44

Speaker: : Caterina Gratton

Course:

This lecture introduces neuroscience concepts and methods such as fMRI, visual respones in BOLD data, and the eccentricity of visual receptive fields.

Difficulty level: Intermediate

Duration: 7:15

Speaker: : Mike X. Cohen

Course:

This tutorial walks users through the creation and visualization of activation flat maps from fMRI datasets.

Difficulty level: Intermediate

Duration: 12:15

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates to users the conventional preprocessing steps when working with BOLD signal datasets from fMRI.

Difficulty level: Intermediate

Duration: 12:05

Speaker: : Mike X. Cohen

Course:

In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB.

Difficulty level: Intermediate

Duration: 20:12

Speaker: : Mike X. Cohen

Course:

This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.

Difficulty level: Intermediate

Duration: 12:52

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets.

Difficulty level: Intermediate

Duration: 13:39

Speaker: : Mike X. Cohen

Course:

In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.

Difficulty level: Intermediate

Duration: 17:54

Speaker: : Mike X. Cohen

Course:

This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging.

Difficulty level: Intermediate

Duration: 5:02

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time.

Difficulty level: Intermediate

Duration: 15:01

Speaker: : Mike X. Cohen

Course:

This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.

Difficulty level: Intermediate

Duration: 5:15

Speaker: : Mike X. Cohen

Course:

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data.

Difficulty level: Intermediate

Duration: 17:08

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate

Duration: 11:23

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate

Duration: 22:41

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate

Duration: 17:19

Speaker: : Mike X. Cohen

In this lecture, you will learn about current methods, approaches, and challenges to studying human neuroanatomy, particularly through the lense of neuroimaging data such as fMRI and diffusion tensor imaging (DTI).

Difficulty level: Intermediate

Duration: 1:35:14

Speaker: : Matt Glasser

In this final lecture of the *INCF Short Course: Introduction to Neuroinformatics*, you will hear about new advances in the application of machine learning methods to clinical neuroscience data. In particular, this talk discusses the performance of *SynthSeg*, an image segmentation tool for automated analysis of highly heterogeneous brain MRI clinical scans.

Difficulty level: Intermediate

Duration: 1:32:01

Speaker: : Juan Eugenio Iglesias

- Artificial Intelligence (1)
- Notebooks (1)
- Provenance (1)
- EBRAINS RI (6)
- Animal models (1)
- Brain-hardware interfaces (1)
- Clinical neuroscience (20)
- General neuroscience
(16)
- General neuroinformatics (1)
- Computational neuroscience (53)
- Statistics (5)
- Computer Science (4)
- (-) Genomics (8)
- (-)
Data science
(9)
- Open science (5)
- Project management (1)
- Neuroethics (3)