Skip to main content

This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs. 

Difficulty level: Intermediate
Duration: 50:18
Speaker: : Jeff Grethe

In this lecture, the speaker demonstrates Neurokernel's module interfacing feature by using it to integrate independently developed models of olfactory and vision LPUs based upon experimentally obtained connectivity information.

Difficulty level: Intermediate
Duration: 29:56
Speaker: : Aurel A. Lazar

This lecture highlights the importance of correct annotation and assignment of location, and updated atlas resources to avoid errors in navigation and data interpretation.

Difficulty level: Intermediate
Duration: 22:04
Speaker: : Trygve Leergard

We are at the exciting technological stage where it has become feasible to represent the anatomy of an entire human brain at the cellular level. This lecture discusses how neuroanatomy in the 21st Century has become an effort towards the virtualization and standardization of brain tissue.

Difficulty level: Intermediate
Duration: 25:27
Speaker: : Jacopo Annese

This lecture covers essential features of digital brain models for neuroinformatics, particularly NeuroMaps. 

Difficulty level: Intermediate
Duration: 22:26
Speaker: : Douglas Bowden

This presentation covers the neuroinformatics tools and techniques used and their relationship to neuroanatomy for the Allen Institute's atlases of the mouse, developing mouse, and mouse connectional atlas.

Difficulty level: Intermediate
Duration: 23:41
Speaker: : Mike Hawrylycz

This tutorial covers the fundamentals of collaborating with Git and GitHub.

Difficulty level: Intermediate
Duration: 2:15:50
Speaker: : Elizabeth DuPre

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks. 

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

This lesson provides an overview of Jupyter notebooks, Jupyter lab, and Binder, as well as their applications within the field of neuroimaging, particularly when it comes to the writing phase of your research. 

Difficulty level: Intermediate
Duration: 50:28
Speaker: : Elizabeth DuPre

This lecture gives an overview of how to prepare and preprocess neuroimaging (EEG/MEG) data for use in TVB.  

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn
Course:

 

Panel discussion by leading scientists, engineers and philosophers discuss what brain-computer interfaces are and the unique scientific and ethical challenges they pose. hosted by Lynne Malcolm from ABC Radio National's All in the Mind program and features:

  • Dr Hannah Maslen, Deputy Director, Oxford Uehiro Centre for Practical Ethics, University of Oxford
  • Prof. Eric Racine, Director, Pragmatic Health Ethics Research Unity, Montreal Institute of Clinical Research
  • Prof Jeffrey Rosenfeld, Director, Monash Institute of Medical Engineering, Monash University
  • Dr Isabell Kiral-Kornek, AI and Life Sciences Researcher, IBM Research
  • A/Prof Adrian Carter, Neuroethics Program Coordinator, ARC Centre of Excellence for Integrative Brain Function

 

Difficulty level: Intermediate
Duration: 1:14:34
Course:

 

Panel of experts discuss the virtues and risks of our digital health data being captured and used by others in the age of Facebook, metadata retention laws, Cambridge Analytica and a rapidly evolving neuroscience. The discussion was moderated by Jon Faine, ABC Radio presenter. The panelists were:

  • Mr Sven Bluemmel, Victorian Information Commissioner
  • Prof Judy Illes, Neuroethics Canada, University of British Columbia, Order of Canada
  • Prof Mark Andrejevic, Professor of Media Studies, Monash University
  • Ms Vrinda Edan, Chief Operating Officer, Victorian Mental Illness Awareness Council


 

 

Difficulty level: Intermediate
Duration: 1:10:30

This is the Introductory Module to the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition.

Difficulty level: Intermediate
Duration: 50:17

This module covers the concepts of gradient descent and the backpropagation algorithm and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate
Duration: 1:51:03
Speaker: : Yann LeCun

This lecture covers concepts associated with neural nets, including rotation and squashing, and is a part of the Deep Learning Course at New York University's Center for Data Science (CDS).

Difficulty level: Intermediate
Duration: 1:01:53
Speaker: : Alfredo Canziani

This lesson provides a detailed description of some of the modules and architectures involved in the development of neural networks. 

Difficulty level: Intermediate
Duration: 1:42:26

This lecture covers the concept of neural nets training (tools, classification with neural nets, and PyTorch implementation) and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate
Duration: 1:05:47
Speaker: : Alfredo Canziani

This lecture covers the concept of parameter sharing: recurrent and convolutional nets and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate
Duration: 1:59:47

This lecture covers the concept of convolutional nets in practice and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate
Duration: 51:40
Speaker: : Yann LeCun

This lecture discusses the concept of natural signals properties and the convolutional nets in practice and is a part of the Deep Learning Course at NYU's Center for Data Science.

Difficulty level: Intermediate
Duration: 1:09:12
Speaker: : Alfredo Canziani