Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Next generation science with Jupyter. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This tutorial was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Learn how to create a standard extracellular electrophysiology dataset in NWB using Python
Learn how to create a standard calcium imaging dataset in NWB using Python
Learn how to create a standard intracellular electrophysiology dataset in NWB
Learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm
Learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB
Learn how to create a standard calcium imaging dataset in NWB using MATLAB
Learn how to create a standard intracellular electrophysiology dataset in NWB
Overview of the Braintorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition
Overview of the CaImAn package, and demonstration of usage with NWB
Overview of the SpikeInterface package, including demonstration of data loading, preprocessing, spike sorting, and comparison of spike sorters
Overview of the NWBWidgets package, including coverage of different data types, and information for building custom widgets within this framework
This is the Introductory Module to the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.
This module covers the concepts of gradient descent and the backpropagation algorithm and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.
This lecture covers the concept of neural nets--rotation and squashing and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.
This lecture on modules and architectures is part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.
This lecture covers the concept of neural nets training (tools, classification with neural nets, and PyTorch implementation) and is a part of the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Introduction to Data Science or a Graduate Level Machine Learning.