Skip to main content

This tutorial demonstrates to users the conventional preprocessing steps when working with BOLD signal datasets from fMRI. 

Difficulty level: Intermediate
Duration: 12:05
Speaker: : Mike X. Cohen

In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB. 

Difficulty level: Intermediate
Duration: 20:12
Speaker: : Mike X. Cohen

This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.

Difficulty level: Intermediate
Duration: 12:52
Speaker: : Mike X. Cohen

This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets. 

Difficulty level: Intermediate
Duration: 13:39
Speaker: : Mike X. Cohen

In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.

Difficulty level: Intermediate
Duration: 17:54
Speaker: : Mike X. Cohen

This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging. 

Difficulty level: Intermediate
Duration: 5:02
Speaker: : Mike X. Cohen

This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time. 

Difficulty level: Intermediate
Duration: 15:01
Speaker: : Mike X. Cohen

This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.

Difficulty level: Intermediate
Duration: 5:15
Speaker: : Mike X. Cohen

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data. 

Difficulty level: Intermediate
Duration: 17:08
Speaker: : Mike X. Cohen

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate
Duration: 11:23
Speaker: : Mike X. Cohen

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate
Duration: 22:41
Speaker: : Mike X. Cohen

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate
Duration: 17:19
Speaker: : Mike X. Cohen

This lecture gives an introduction to the European Academy of Neurology, its recent achievements and ambitions.

Difficulty level: Intermediate
Duration: 21:57
Speaker: : Paul Boon

This lecture discusses the the importance and need for data sharing in clinical neuroscience.

Difficulty level: Intermediate
Duration: 25:22
Speaker: : Thomas Berger

This lecture presents the Medical Informatic Platform's data federation for Traumatic Brain Injury.

Difficulty level: Intermediate
Duration: 25:55
Speaker: : Stefano Finazzi

This lecture gives an overview on the European Health Dataspace. 

Difficulty level: Intermediate
Duration: 26:33

This lecture presents the Medical Informatics Platform's data federation in epilepsy.

Difficulty level: Intermediate
Duration: 27:09
Speaker: : Philippe Ryvlin

This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat. 

Difficulty level: Intermediate
Duration: 1:19:17
Speaker: : Sonny Chen

This is an introductory lecture on whole-brain modelling, delving into the various spatial scales of neuroscience, neural population models, and whole-brain modelling. Additionally, the clinical applications of building and testing such models are characterized. 

Difficulty level: Intermediate
Duration: 1:24:44
Speaker: : John Griffiths

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke