In this lecture, the speaker demonstrates Neurokernel's module interfacing feature by using it to integrate independently developed models of olfactory and vision LPUs based upon experimentally obtained connectivity information.
This lecture highlights the importance of correct annotation and assignment of location, and updated atlas resources to avoid errors in navigation and data interpretation.
We are at the exciting technological stage where it has become feasible to represent the anatomy of an entire human brain at the cellular level. In this presentation, the speaker explains that neuroanatomy in the XXI Century has become an effort towards the virtualization and standardization of brain tissue.
This lecture covers essential features of digital brain models for neuroinformatics.
This presentation covers the neuroinformatics tools and techniques used and their relationship to neuroanatomy for the Allen atlases of the mouse, developing mouse, and mouse connectional atlas.
In this lesson, Yaroslav O. Halchenko describes how DataLad allows you to track and mange both your data and analysis code, thereby facilitating reliable, reproducible, and shareable research.
Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Learn how to create a standard extracellular electrophysiology dataset in NWB using Python
Learn how to create a standard calcium imaging dataset in NWB using Python
Learn how to create a standard intracellular electrophysiology dataset in NWB
Learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm
Learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB
Learn how to create a standard calcium imaging dataset in NWB using MATLAB
Learn how to create a standard intracellular electrophysiology dataset in NWB
Overview of the Braintorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition
Overview of the CaImAn package, and demonstration of usage with NWB
Overview of the SpikeInterface package, including demonstration of data loading, preprocessing, spike sorting, and comparison of spike sorters
Overview of the NWBWidgets package, including coverage of different data types, and information for building custom widgets within this framework
Panel discussion by leading scientists, engineers and philosophers discuss what brain-computer interfaces are and the unique scientific and ethical challenges they pose. hosted by Lynne Malcolm from ABC Radio National's All in the Mind program and features: