Course:

In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data.

Difficulty level: Intermediate

Duration: 17:08

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.

Difficulty level: Intermediate

Duration: 11:23

Speaker: : Mike X. Cohen

Course:

This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.

Difficulty level: Intermediate

Duration: 22:41

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.

Difficulty level: Intermediate

Duration: 17:19

Speaker: : Mike X. Cohen

This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat.

Difficulty level: Intermediate

Duration: 1:19:17

Speaker: : Sonny Chen

Course:

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.

Difficulty level: Intermediate

Duration: 1:39:04

Speaker: : Erin Dickie and John Griffiths

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

This lesson corresponds to slides 65-90 of the PDF below.

Difficulty level: Intermediate

Duration: 1:15:04

Speaker: : Daniel Hauke

This lesson provides a brief introduction to the *Computational Modeling of Neuronal Plasticity.*

Difficulty level: Intermediate

Duration: 0:40

Speaker: : Florence I. Kleberg

In this lesson, you will be introducted to a type of neuronal model known as the leaky integrate-and-fire (LIF) model.

Difficulty level: Intermediate

Duration: 1:23

Speaker: : Florence I. Kleberg

This lesson goes over various potential inputs to neuronal synapses, loci of neural communication.

Difficulty level: Intermediate

Duration: 1:20

Speaker: : Florence I. Kleberg

This lesson describes the how and why behind implementing integration time steps as part of a neuronal model.

Difficulty level: Intermediate

Duration: 1:08

Speaker: : Florence I. Kleberg

In this lesson, you will learn about neural spike trains which can be characterized as having a Poisson distribution.

Difficulty level: Intermediate

Duration: 1:18

Speaker: : Florence I. Kleberg

This lesson covers spike-rate adaptation, the process by which a neuron's firing pattern decays to a low, steady-state frequency during the sustained encoding of a stimulus.

Difficulty level: Intermediate

Duration: 1:26

Speaker: : Florence I. Kleberg

This lesson provides a brief explanation of how to implement a neuron's refractory period in a computational model.

Difficulty level: Intermediate

Duration: 0:42

Speaker: : Florence I. Kleberg

In this lesson, you will learn a computational description of the process which tunes neuronal connectivity strength, spike-timing-dependent plasticity (STDP).

Difficulty level: Intermediate

Duration: 2:40

Speaker: : Florence I. Kleberg

This lesson reviews theoretical and mathematical descriptions of correlated spike trains.

Difficulty level: Intermediate

Duration: 2:54

Speaker: : Florence I. Kleberg

This lesson investigates the effect of correlated spike trains on spike-timing dependent plasticity (STDP).

Difficulty level: Intermediate

Duration: 1:43

Speaker: : Florence I. Kleberg

This lesson goes over synaptic normalisation, the homeostatic process by which groups of weighted inputs scale up or down their biases.

Difficulty level: Intermediate

Duration: 2:58

Speaker: : Florence I. Kleberg

In this lesson, you will learn about the intrinsic plasticity of single neurons.

Difficulty level: Intermediate

Duration: 2:08

Speaker: : Florence I. Kleberg

This lesson covers short-term facilitation, a process whereby a neuron's synaptic transmission is enhanced for a short (sub-second) period.

Difficulty level: Intermediate

Duration: 1:58

Speaker: : Florence I. Kleberg

- Bayesian networks (1)
- Cognitive neuroinformatics (1)
- Neuroimaging (16)
- Machine learning (5)
- Neuromorphic engineering (1)
- Standards and best practices (7)
- Tools (2)
- Psychology (1)
- (-) Workflows (2)
- Animal models (1)
- Brain-hardware interfaces (1)
- General neuroscience (8)
- (-) Computational neuroscience (25)
- Statistics (4)
- Computer Science (1)
- Genomics (5)
- (-) Data science (2)
- Open science (3)