Skip to main content

The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.

Difficulty level: Beginner
Duration: 1:28:53
Speaker: : Julie Courtiol

Learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper: On the Nature of Seizure Dynamics which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn

As models in neuroscience have become increasingly complex, it has become more difficult to share all aspects of models and model analysis, hindering model accessibility and reproducibility. In this session, we will discuss existing resources for promoting FAIR data and models in computational neuroscience, their impact on the field, and the remaining barriers

 

This lecture covers how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.

Difficulty level: Beginner
Duration: 13:16
Speaker: : Kelly Shen

Much like neuroinformatics, data science uses techniques from computational science to derive meaningful results from large complex datasets. In this session, we will explore the relationship between neuroinformatics and data science, by emphasizing a range of data science approaches and activities, ranging from the development and application of statistical methods, through the establishment of communities and platforms, and through the implementation of open-source software tools. Rather than rigid distinctions, in the data science of neuroinformatics, these activities and approaches intersect and interact in dynamic ways. Together with a panel of cutting-edge neuro-data-scientist speakers, we will explore these dynamics

 

This lecture covers how brainlife.io works, and how it can be applied to neuroscience data.

Difficulty level: Beginner
Duration: 10:14
Speaker: : Franco Pestilli

As a part of NeuroHackademy 2020, Tara Madhyastha (University of Washington), Andrew Crabb (AWS), and Ariel Rokem (University of Washington) give a lecture on Cloud Computing, focusing on Amazon Web Services

 

This video is provided by the University of Washington eScience Institute.

 

Difficulty level: Beginner
Duration: 01:43:59
Speaker: :

Shawn Brown presents an overview of CBRAIN, a web-based platform that allows neuroscientists to perform computationally intensive data analyses by connecting them to high-performance-computing facilities across Canada and around the world.

 

This talk was given in the context of a Ludmer Centre event in 2019.

 

 

Difficulty level: Beginner
Duration: 56:07
Speaker: :

This lecture covers structured data, databases, federating neuroscience-relevant databases, ontologies. 

Difficulty level: Beginner
Duration: 1:30:45
Speaker: : Maryann Martone

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible,  Interoperable, and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been the successes?  What is currently very difficult? Where does neuroscience need to go?

 

This lecture covers FAIR atlases, from their background, their construction, and how they can be created in line with the FAIR principles.

Difficulty level: Beginner
Duration: 14:24
Speaker: : Heidi Kleven

This lecture covers advanced concept of energy based models. The lecture is a part of the Advanced energy based models modules of the the Deep Learning Course at CDS, a course that covered the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. Prerequisites for this course include: Energy based models IEnergy based models II, Energy based models III, and Introduction to Data Science or a Graduate Level Machine Learning.

Difficulty level: Beginner
Duration: 56:41
Speaker: : Alfredo Canziani

 

Blake Richards gives an introduction to deep learning, with a perspective via inductive biases and emphasis on correctly matching deep learning to the right research questions.

 

The lesson was presented in the context of the BrainHack School 2020.

Difficulty level: Beginner
Duration: 01:35:12
Speaker: :

As a part of NeuroHackademy 2021, Noah Benson gives an introduction to Pytorch, one of the two most common software packages for deep learning applications to the neurosciences.

Difficulty level: Beginner
Duration: 00:50:40
Speaker: :

Learn how to use TensorFlow 2.0 in this full tutorial for beginners. This course is designed for Python programmers looking to enhance their knowledge and skills in machine learning and artificial intelligence.

 

Throughout the 8 modules in this course you will learn about fundamental concepts and methods in ML & AI like core learning algorithms, deep learning with neural networks, computer vision with convolutional neural networks, natural language processing with recurrent neural networks, and reinforcement learning.

Difficulty level: Beginner
Duration: 06:52:07
Speaker: :

In this hands-on tutorial, Dr. Robert Guangyu Yang works through a number of coding exercises to see how RNNs can be easily used to study cognitive neuroscience questions, with a quick demonstration of how we can train and analyze RNNs on various cognitive neuroscience tasks. Familiarity of Python and basic knowledge of Pytorch are assumed.

Difficulty level: Beginner
Duration: 00:26:38
Speaker: :

Introduction to the Mathematics chapter of Datalabcc's "Foundations in Data Science" series.

Difficulty level: Beginner
Duration: 2:53
Speaker: : Barton Poulson

Primer on elementary algebra

Difficulty level: Beginner
Duration: 3:03
Speaker: : Barton Poulson

Primer on linear algebra

Difficulty level: Beginner
Duration: 5:38
Speaker: : Barton Poulson

Primer on systems of linear equations

Difficulty level: Beginner
Duration: 5:24
Speaker: : Barton Poulson

Primer on calculus

Difficulty level: Beginner
Duration: 4:17
Speaker: : Barton Poulson

How calculus relates to optimization

Difficulty level: Beginner
Duration: 8:43
Speaker: : Barton Poulson

Big O notation

Difficulty level: Beginner
Duration: 5:19
Speaker: : Barton Poulson