Skip to main content

This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network. 

Difficulty level: Beginner
Duration: 1:32:17
Speaker: : Shih-Chii Liu

Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.

Difficulty level: Beginner
Duration: 21:15
Speaker: : Tadashi Yamazaki

Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.

Difficulty level: Beginner
Duration: 41:57
Speaker: : Giacomo Indiveri

Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.

Difficulty level: Beginner
Duration: 20:39
Speaker: : Giacomo Indiveri

This lecture covers describing and characterizing an input-output relationship.

Difficulty level: Beginner
Duration: 1:35:33

Part 1 of 2 of a tutorial on statistical models for neural data

Difficulty level: Beginner
Duration: 1:45:48
Speaker: : Jonathan Pillow

Part 2 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:50:31
Speaker: : Jonathan Pillow

From the retina to the superior colliculus, the lateral geniculate nucleus into primary visual cortex and beyond, this lecture gives a tour of the mammalian visual system highlighting the Nobel-prize winning discoveries of Hubel & Wiesel.

Difficulty level: Beginner
Duration: 56:31
Speaker: : Clay Reid

From Universal Turing Machines to McCulloch-Pitts and Hopfield associative memory networks, this lecture explains what is meant by computation.

Difficulty level: Beginner
Duration: 55:27
Speaker: : Christof Koch

Ion channels and the movement of ions across the cell membrane.

Difficulty level: Beginner
Duration: 25:51
Speaker: : Carl Petersen

A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.

Difficulty level: Beginner
Duration: 51:49

2nd part of the lecture. Introduction to cell receptors and signalling cascades

Difficulty level: Beginner
Duration: 41:38

GABAergic interneurons and local inhibition on the circuit level.

Difficulty level: Beginner
Duration: 16:27
Speaker: : Carl Petersen

Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32

This lecture focuses on how the immune system can target and attack the nervous system to produce autoimmune responses that may result in diseases such as multiple sclerosis, neuromyelitis and lupus cerebritis manifested by motor, sensory, and cognitive impairments. Despite the fact that the brain is an immune-privileged site, autoreactive lymphocytes producing proinflammatory cytokines can cause active brain inflammation, leading to myelin and axonal loss.

Difficulty level: Beginner
Duration: 37:36
Speaker: : Anat Achiron

An overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the Central Nervous System.

Difficulty level: Beginner
Duration: 45:47