Skip to main content
Lecture title:

This lecture covers an introduction to connectomics, and image processing tools for the study of connectomics. 

Difficulty level: Beginner
Duration: 1:23:03
Lecture title:

This lecture covers acquisition techniques, the physics of MRI, diffusion imaging, prediction using fMRI. 

Difficulty level: Beginner
Duration: 1:40:21
Lecture title:

This lecture will provide an overview of neuroimaging techniques and their clinical applications.

Difficulty level: Beginner
Duration: 45:29
Speaker: : Dafna Ben Bashat
Lecture title:

Optical imaging offers a look inside the working brain. This lecture takes a look at orientation and ocular dominance columns in the visual cortex, and shows how they can be viewed with calcium imaging.

Difficulty level: Beginner
Duration: 26:17
Speaker: : Clay Reid
Lecture title:

Functional imaging has led to the discovery of a plethora of visual cortical regions. This lecture introduces functional imaging techniques and their teachings about the visual cortex.

Difficulty level: Beginner
Duration: 1:07:03
Speaker: : Clay Reid
Lecture title:

Investigating the structure of synapses with electron microscopy.

Difficulty level: Beginner
Duration: 28:23
Speaker: : Carl Petersen
Lecture title:

Introductory presentation on how data science can help with scientific reproducibility.

Difficulty level: Beginner
Duration:
Speaker: : Michel Dumontier
Lecture title:

The "connectome" is a term, coined in the past decade, that has been used to describe more than one phenomenon in neuroscience. This lecture explains the basics of structural connections at the micro-, meso- and macroscopic scales.

Difficulty level: Beginner
Duration: 1:13:16
Speaker: : Clay Reid
Lecture title:

Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32
Lecture title:

This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases

Difficulty level: Beginner
Duration: 1:02:29
Speaker: : Nir Giladi
Lecture title:

How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.

Difficulty level: Beginner
Duration: 1:08:45
Speaker: : Clay Reid
Lecture title:

The mechanisms behind changes in synaptic function created by learning.

Difficulty level: Beginner
Duration: 27:07
Speaker: : Carl Petersen
Lecture title:

This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 1:23:01
Speaker: : Gaute Einevoll
Lecture title:

This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 1:23:01
Speaker: : Gaute Einevoll
Lecture title:

This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 1:23:01
Speaker: : Gaute Einevoll
Lecture title:

This lecture describes non-spiking simple neuron models used in artificial neural networks and machine learning.

Difficulty level: Beginner
Duration: 8:23
Speaker: : Geoffrey Hinton
Lecture title:

This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 1:23:01
Speaker: : Gaute Einevoll
Lecture title:

This lecture describes non-spiking simple neuron models used in artificial neural networks and machine learning.

Difficulty level: Beginner
Duration: 8:23
Speaker: : Geoffrey Hinton
Lecture title:

Neuroethics has been described as containing at least two components - the neuroscience of ethics and the ethics of neuroscience. The first involves neuroscientific theories, research, and neuro-imaging focused on how the brain arrives at moral decisions and actions, which challenge existing descriptive theories of how humans develop moral thinking and make ethical decisions. The second, ethics of neuroscience, involves applying normative theories about what is right, good and fair to ethical questions raised by neuroscientific research and new technologies, such as how to balance the public benefit of “big data” neuroscience while protecting individual privacy and norms of informed consent.

Difficulty level: Beginner
Duration: 38:49
Lecture title:

The HBP as an ICT flagship project crucially relies on ICT and will contribute important input into the development of new computing principles and artefacts. Individuals working on the HBP should therefore be aware of the long history of ethical issues discussed in computing. The discourse on ethics and computing can be traced back to Norbert Wiener and the very beginning of digital computing. From the 1970s and 80s it has developed into an active discussion involving academics from various disciplines, professional bodies and industry.

Difficulty level: Beginner
Duration: 46:12
Speaker: : Bernd Stahl