Skip to main content

This brief talk covers an analysis technique for multi-band, multi-echo fMRI data, applying a denoising framework which can be used in an automated pipeline.  

Difficulty level: Beginner
Duration: 4:45
Speaker: : David Abbott

In this hands-on session, you will learn how to explore and work with DataLad datasets, containers, and structures using Jupyter notebooks. 

Difficulty level: Beginner
Duration: 58:05

This talk describes the challenges in sharing personal, and in particular, health data, such as data anonymization and maintaining GDPR compliance. 

Difficulty level: Beginner
Duration: 15:57
Speaker: : Petra Ritter

This talk covers the differences between applying HED annotation to fMRI datasets versus other neuroimaging practices, and also introduces an analysis pipeline using HED tags. 

Difficulty level: Beginner
Duration: 22:52
Speaker: : Monique Denissen

This lesson provides a thorough description of neuroimaging development over time, both conceptually and technologically. You will learn about the fundamentals of imaging techniques such as MRI and PET, as well as how the resultant data may be used to generate novel data visualization schemas. 

Difficulty level: Beginner
Duration: 1:43:57
Speaker: : Jack Van Horn

This brief video provides an introduction to brainlife.io, a free cloud computing platform for neuroimaging data analysis. 

Difficulty level: Beginner
Duration: 2:41
Speaker: :

This quick visual walkthrough presents the steps required in uploading data into a brainlife project using the graphical user interface (GUI). 

Difficulty level: Beginner
Duration: 2:00
Speaker: :

This short walkthrough documents the steps needed to find a dataset in OpenNeuro, a free and open platform for sharing MRI, MEG, EEG, iEEG, ECoG, ASL, and PET data, and import it directly to a brainlife project. 

Difficulty level: Beginner
Duration: 0:35
Speaker: :

This video shows how to use the brainlife.io interface to edit the participants' info file. This file is the ParticipantInfo.json file of the Brain Imaging Data Structure (BIDS).

Difficulty level: Beginner
Duration: 0:34
Speaker: :

This quick video presents some of the various visualizers available on brainlife.io

Difficulty level: Beginner
Duration: 1:11
Speaker: :

This video demonstrates each required step for preprocessing T1w anatomical data in brainlife.io.

Difficulty level: Beginner
Duration: 3:28
Speaker: :
Course:

This lecture covers an introduction to connectomics, as well as image processing tools for the study of connectomics. 

Difficulty level: Beginner
Duration: 1:23:03

This lecture will provide an overview of neuroimaging techniques and their clinical applications.

Difficulty level: Beginner
Duration: 45:29
Speaker: : Dafna Ben Bashat

Optical imaging offers a look inside the working brain. This lecture takes a look at orientation and ocular dominance columns in the visual cortex, and shows how they can be viewed with calcium imaging.

Difficulty level: Beginner
Duration: 26:17
Speaker: : Clay Reid

Functional imaging has led to the discovery of a plethora of visual cortical regions. This lecture introduces functional imaging techniques and their teachings about the visual cortex.

Difficulty level: Beginner
Duration: 1:07:03
Speaker: : Clay Reid

In this lesson you will learn about investigating the structure of synapses with electron microscopy. 

Difficulty level: Beginner
Duration: 28:23
Speaker: : Carl Petersen
Course:

The Brain Imaging Data Structure (BIDS) is a standard prescribing a formal way to name and organize MRI data and metadata in a file system that simplifies communication and collaboration between users and enables easier data validation and software development through using consistent paths and naming for data files.

Difficulty level: Beginner
Duration: 0:56
Course:

The Neuroimaging Data Model (NIDM) is a collection of specification documents that define extensions the W3C PROV standard for the domain of human brain mapping. NIDM uses provenance information as means to link components from different stages of the scientific research process from dataset descriptors and computational workflow, to derived data and publication.

Difficulty level: Beginner
Duration: 0:53
Course:

Longitudinal Online Research and Imaging System (LORIS) is a web-based data and project management software for neuroimaging research studies. It is an open source framework for storing and processing behavioural, clinical, neuroimaging and genetic data. LORIS also makes it easy to manage large datasets acquired over time in a longitudinal study, or at different locations in a large multi-site study.

Difficulty level: Beginner
Duration: 0:35
Speaker: : Samir Das