This lecture covers describing and characterizing an input-output relationship.
Part 1 of 2 of a tutorial on statistical models for neural data
Part 2 of 2 of a tutorial on statistical models for neural data.
From the retina to the superior colliculus, the lateral geniculate nucleus into primary visual cortex and beyond, this lecture gives a tour of the mammalian visual system highlighting the Nobel-prize winning discoveries of Hubel & Wiesel.
From Universal Turing Machines to McCulloch-Pitts and Hopfield associative memory networks, this lecture explains what is meant by computation.
Ion channels and the movement of ions across the cell membrane.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Introduction to the course Cellular Mechanisms of Brain Function.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Introduction to the course Cellular Mechanisms of Brain Function.
Ion channels and the movement of ions across the cell membrane.
Spatiotemporal dynamics of the membrane potential.
Action potentials, and biophysics of voltage-gated ion channels.
Voltage-gating kinetics of sodium and potassium channels.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Action potential initiation and propagation.
Neurotransmitter release in the presynaptic specialization.
Synaptic modulation through diffusing neurotransmitters.
Glutamatergic transmission.
Glutamate release after an action potential. Resulting post-synaptic potentials in a biophysically realistic situation.